CDNL Engineering Consultants

CDNL Engineering Consultants

Final Report

Tilt-up Concrete Panel Building Design Lawton's Drug Store, Elizabeth Ave., St. John's CHIMO Construction Management Ltd.

Safety. Serviceability. Satisfaction.

CDNL Engineering Consultants c/o Engineering 8700 Project Group 6 Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, NL AIB 3X5

Mr. Dave Leonard CHIMO Construction Management Limited 1 Crosbie Place St. John's, NL A1B 3Y8

April 5th, 2010

Dear Mr. Leonard:

The enclosed document is the Final Design Report developed by CDNL Engineering Consultants for CHIMO Construction Management Limited for the tilt-up panel building design of a Lawton's Drugs Building.

This report includes a detailed account of all designs completed for the tilt-up concrete panel building project. Design calculations and drawings can be found in the report appendices. A cost estimate of the designs completed for this project is included in the main body of the report, with detailed cost analysis included in the appendices. This report also contains any problems or design challenges encountered and their remedies, as well as any changes that have been made to the project requirements.

If you have any questions or concerns regarding the contained documentation, we would be pleased to discuss them with you.

Sincerely, CDNL Engineering Consultants

Laura Bennett

Dana Dalton

Nick Coates

Chris Willette

cc: Dr. Steve Bruneau, ENGI 8700 Course Instructor

SUMMARY

The introduction of new technologies and products has helped fuel the rapid growth of tilt-up construction over the past decade. Combined with creativity on the part of the designer, tilt-up is branching away from big box buildings and has emerged in areas of one and two-storey buildings and small retail developments. As a result, more contractors and owners are embracing tilt-up construction, not only for its speed and cost-effectiveness but also for the durability and creative possibilities it provides, and are using tilt-up in structures and building types in many areas of the construction industry.

CDNL Engineering Consultants, under contract with CHIMO Construction Management Limited, has designed a two-storey tilt-up concrete panel building to be used as a new Lawton's Drug Store Building on Elizabeth Avenue in St. John's, NL. This report contains of all design assumptions, calculations, results and structural drawings produced throughout the design of this building.

The execution of this project involved careful planning in the selection of panel dimensions due to the restrictions based on openings, lift requirements and reinforcement placement. The areas where structural steel members and lift inserts attach to the panels was chosen to incorporate the most effective means of keeping costs low and structural stability maintained. Panels were analyzed for in-service loads including bending, lateral forces, compression, overturning moments and deflection. Construction loads considered include the bending moments occurring during lifting.

The structural steel system was developed to support all loads transferred by the roof and second storey floor slab. Structural columns, beams and joists were designed considering the loads recommended by the *National Building Code of Canada* [3]. Roof and floor deck diaphragms were added to allow transfer of lateral loads on the panels to the steel system. A rigid steel frame was also designed to transfer lateral loads between the panels surrounding the loading area of the building.

A cost estimate for the structural components of this building was completed with a total estimate value of \$656,570.27. Compared to the contractor's of \$638,030.00, this was accurate to 2.9%.

CONTENTS

 $\overline{}$

1.0	INTRO	DDUCTION
2.0	PROJ	ECT DESCRIPTION 2
3.0	CLIEN	IT SPECIFIED DESIGN REQUIREMENTS
4.0	BACK	GROUND INFORMATION
	4.1	Tilt-Up Construction4
5.0	LOAD	S AND LOAD CASES5
	5.1	Loads Systems 5
	5.2	Roof Loads5
	5.3	Second Storey Floor Loads9
	5.4	Concrete Panel Wall Loads 10
	5.5	Vertical Loads 11
	5.6	Lateral Loads 13
6.0	TILT-U	JP CONCRETE PANEL WALLS 18
	6.1	Design Codes and Standards 18
	6.2	Panel Descriptions 18
	6.3	Methodology 18
	6.4	Code Comparison 22
	6.5	Overturning 22
	6.6	Reinforcement 22
	6.7	Connections 22
	6.8	Lifting 23
7.0	STRU	CTURAL STEEL 24
	7.1	Structural Building System 24
	7.2	Structural Columns 24
	7.3	Roof and Floor Beams 25
	7.4	Roof and Floor Girders25
	7.5	Joist Systems 26

Page | II

	7.6	Loading Bay Frame:	27
	7.7	Connections	28
	7.8	Steel Diaphragms	32
8.0	CONC	RETE SLAB FLOOR	33
9.0	ROOF	SYSTEM	34
10.0	COST	ESTIMATION	35
11.0	ACKN	IOWLEDGEMENTS	36
12.0	REFE	RENCES	37

APPENDICES

 $\overline{}$

APPENDIX A	ARCHITECTURAL DRAWINGS	A-1
APPENDIX B	STRUCTURAL DRAWINGS	B-1
APPENDIX C	LOAD CALCULATIONS	C-1
APPENDIX D	DESIGN CALCULATIONS	D-1
APPENDIX E	COST ESTIMATE	E-1

1.0 INTRODUCTION

This report provides CHIMO Construction Management Limited with the final design and cost estimation for the two-storey tilt-up concrete panel Lawton's Drug Store.

Each section of this report pertains to the major elements of design that were completed throughout this project: tilt-up concrete panel walls, structural steel, second storey concrete slab floor and the roofing system. These sections include the design criteria, codes and standards, design methodology and the final design results. All assumptions and their reasoning made during the designs are included in these sections. Design calculations, drawings and reference material can be found in the report appendices.

The summary of the cost analysis for this design is found in the main body of the report. Detailed material lists and the breakdown of the estimate is found in the report appendices.

2.0 PROJECT DESCRIPTION

CDNL Engineering Consultants (CDNL) has been contracted to design a two-storey tilt-up concrete panel building for CHIMO Construction Management Ltd (CHIMO). The building will be used to house a new Lawton's Drugs Store to be located at the current Dominion grocery store site, on Elizabeth Avenue-East. The building is to be free standing and approximately 11,200 square feet in area. See Figure 1 for an aerial view of the building location.

Figure 1 – Location of future Lawton's Drug Store

CHIMO Construction Management Ltd has contracted CDNL Engineering Consultants to complete the design for:

- Tilt-up Concrete Panel Walls
- Structural Steel Beams and Columns
- Intermediate Floor Slab and Joists
- Roof System and Joists
- Connections
- Cost Estimate

Lindsay Construction, a contractor from Nova Scotia specializing in concrete panel tiltups, will perform the lifting of the panels.

3.0 CLIENT SPECIFIED DESIGN REQUIREMENTS

The following requirements for design were specified by the client both prior to commencement of design and throughout the design process:

- The second storey floor is to be designed with a live load of 150 psf or 7.2 kPa. This is to accommodate the filing storage facility to be contained in the second storey of this building.
- The tilt-up concrete panel walls should be designed with a specified thickness of 7.25" or 184.15 mm. This thickness can be changed if required.
- All designs should be completed using Canadian Standards Association (CSA) codes and handbooks. Using equivalent American codes is allowable if applicable.
- Any structural analysis software may be used during the designs.
- The supplied architectural drawings are only meant as guidelines and may be changed if required for design. It is recommended checking with the client when choosing to do this.

4.0 BACKGROUND INFORMATION

4.1 Tilt-Up Construction

Tilt-up concrete panel walls is a construction method in which concrete wall panels are cast on-site and tilted into place. Tilt-up buildings have gained rapid popularity due to their speed of construction and cost efficiency. Panels are cast horizontally on the building floor slab and are then lifted (tilted) into place. The panel design must take into account the loading which occurs in-service, as well as the loading during construction. In-service loading depends on the primary moments caused by lateral wind and seismic forces, axial loads, eccentricity of connections, initial deflection, and concentrated loads from the intermediate floor and roof, and secondary moments caused by the axial load acting on the deflected shape. Construction loads depend on the stresses caused by tilting the panel and bracing. A panel will undergo failure if the maximum factored bending moment exceeds the resisting moment of the concrete section [4].

Multi-storey tilt-up building wall panels can be either load-bearing or non-loadbearing for the interior framing members. For non-loading panels, perimeter columns and edge beams are provided to support the vertical and roof loads. Load-bearing panels eliminate the need for this perimeter framing, which often leads to a more economical design. Load bearing panels are often preferred due to the increased resistance to overturning created by the vertical forces acting on the panels. Structural members are connected to the tilt-up walls by embedded plates or seated connections.

When wall panels contain windows and openings, it is necessary to ensure openings have not created concrete strips or legs that are too narrow. This would be more susceptible to breaking in both in-service and lifting conditions. Recommendations for the width of concrete strips and legs are given in both *ACI 551.2R-10* [5] and *CSA A23.3-04* [1].

Due to the new innovations of this technology, designers are often required to make design assumptions based on recommendations from technology standards and their own discretion.

5.0 LOADS AND LOAD CASES

5.1 Loads Systems

Loads for each element in the building system are calculated based on specifications given in the *National Building Code of Canada* [3]. Loads experienced on the floor, roof and concrete panels are transferred through the structural steel or foundations. The following is a breakdown of the design loads used in the design of the Lawton's Drug Store building.

5.2 Roof Loads

The loads on the roof are a combination of dead, snow and wind loads. These loads create forces on the underlying deck and joist system and are distributed to the structural beams and columns. The *National Building Code of Canada* [3] provides load cases and factors that are applied to the loads in order to determine and design for the worst loading scenario.

5.2.1 Roof Dead Loads

The only dead loads experienced at the roof level are the loads created by the roofing system. The client specified to neglect the presence of any equipment at the roof level that would require additional roof support. Table 5.1 details the components and loads created by the roof system. The values for the roof materials were selected from page 7-41 of *CISC Handbook of Steel Construction* [2].

Dead Loads of Roof System	Load (kPa)
Modified Bitumen Cap and Base	0.27
6 mm Protection Board	0.01
100 mm Rigid Insulation	0.07
12.5 mm Exterior Grade Gypsum Board Sheathing	0.08
12.7 mm Gypsum Board	0.01
Metal Deck	0.015
Fire Protection	0.07
Ducts/Pipes/Wiring	0.25
Structural Steel	0.25
Joists	0.2
Total	1.225

Table 5.1 - U	oper Roof Dead	Loads
---------------	----------------	-------

5.2.2 Roof Snow Load

Snow loads for the Lawton's Drugs Building were calculated using Clause 4.1.6 and Commentary G of Part 4 of Division B of the *National Building Code of Canada* [3]. The general snow load was calculated for the entire roof and extra loads due to drifting were determined for the section behind the front facade and the roof step over the loading bay. The irregular shape of the building, when compared to the standard rectangular shapes covered in the *National Building Code of Canada* [3] required certain factors and dimensions, such as exposure conditions or the shape of the facade, to be overestimated to simplify design and allow for changes in site conditions. Equation (1) is used to calculate the specified snow load for the upper and lower roofs.

$$S = I_s[(S_sC_bC_wC_sC_a) + S_r]$$
(1)

Where:

S	= Varies	Specified snow load, kPa	NBCC 4.1.6.2 (1)
ls	= 1.00	Importance factor	Table 4.1.6.2
Ss	= 2.90	1/50 year ground snow load, kPa	NBCC Appendix C
C_{b}	= 0.80	Basic snow roof load factor	NBCC 4.1.6.2 (2)
C_{w}	= 1.00	Wind exposure factor	NBCC 4.1.6.2 (3)-(4)
C_{s}	= 1.00	Slope factor	NBCC 4.1.6.2 (5) – (7)
C_{a}	= Varies	Accumulation or shape factor	NBC Commentary G, Fig G-5
Sr	= 0.70	1/50 year rain load, kPa	NBC Appendix C

Table 5.2 illustrates the loads obtained for the drifting at distances from the facade and roof step, respectively. Due to small size of the lower roof, there will be higher than average forces over the entire length as the predicted drift extends to the furthest edge and beyond. The loading pattern is triangular with the minimum and maximum values displayed in Table 3.2. Detailed calculations are located in Appendix B of the report.

Table 5.2 - Onow Edads							
Upper Roof (kPa)	Lower Roof (kPa)						
Max. Uniform Snow Load	Maximum Drift Load	Max. Load	Uniform	Snow	Maximum Drift Load		
3.02	4.32	4.36			9.04		

Table 5.2 - Snow Loads

Figure 2 illustrates the snow load pattern seen on the upper and lower roofs. The triangular distributed load on the upper roof depicts the drift load occurring behind the front Lawton's facade.

Figure 2 – Snow loads (East Elevation)

5.2.3 Roof Wind Load

Wind loads were calculated using Clause 4.1.7 and Commentary I of *the National Building Code of Canada* [3]. The inconsistencies between the roof shape and the general layout analyzed in *the National Building Code of Canada* [3] required the designer to consult with Dr. Amgad Hussein for input. Equation (2) is used to calculate the wind pressure.

$$\boldsymbol{P} = \boldsymbol{I}_w \boldsymbol{q} \boldsymbol{C}_e \boldsymbol{C}_p \boldsymbol{C}_g \qquad (1)$$

Where:

Ρ	= Varies	Specified wind load, kPa	NBCC 4.1.7.1 (1)
I_w	= 1.00	Importance factor	Table 4.1.7.1
q	= 0.80	1/50 year velocity pressure, kPa	NBCC Appendix C
C_{e}	= 0.70	Exposure factor	NBCC 4.1.7.1 (5)
Cp	= Varies	External pressure coefficient	NBCC Commentary I, Fig I-8
Cg	= Varies	Gust effect factor	NBCC Commentary I, Fig I-8

Individual calculations were completed for each roof joist span and the worst case loading scenario was selected to govern in order to maintain simplicity during construction. The summary of the forces, on both the upper and lower roofs, is shown in Table 3.2 with detailed design calculations provided in Appendix B.

Table 5.3 -	Wind Loads
-------------	------------

Upper Roof (kPa)				Lower Roof (kPa)			
Updraft Edge	Updraft Centre	Downdraft Edge	Downdraft Centre	Updraft Edge	Updraft Centre	Downdraft Edge	Downdraft Centre
2.3	1.7	1.02	1.02	2.1	1.7	2.18	2.18

5.2.4 Roof Load Combinations

The loads calculated for the dead, snow and wind loads on the upper and lower roof were calculated based on the loads cases specified by the *National Building Code of Canada* [3]. The *NBCC* [3] specifies a minimum live load of 1.0 kPa be applied to the roof. There are no other live loads present. The maximum drift load for each roof was used as the snow load in the load combinations to provide a conservative estimate of loading. As well, the maximum wind load (downdraft or updraft) for each roof was applied to the load combinations. The updraft forces are noted on the drawings and will be provided to CANAM for supply of the joist system.

The load cases for the upper roof are found in Table 5.4 and the load cases for the lower roof are found in Table 5.5.

Load Case	Principal Loads	Companion Load	Factored Load (kPa)
1	1.4D	-	1.715
2	1.25D + 1.5L	0.4W or 0.5S	3.69
3	1.25D + 1.5S	0.4W	8.93
4	1.25D + 1.4W+0.5S	-	6.91
5	1.0D + 1.0E	0.5L+0.25S	2.305

Table 5.4 - Upper Roof Load Cases

Where D = 1.225 kPa

L = 1.00 kPa

W = 2.3 kPa

S = 4.32 kPa

Load Case	Principal Loads	Companion Load	Factored Load (kPa)
1	1.4D	-	1.729
2	1.25D + 1.5L	0.4W or 0.5S	6.06
3	1.25D + 1.5S	0.4W	15.98
4	1.25D + 1.4W+0.5S	-	9.12
5	1.0D + 1.0E	0.5L + 0.25S	3.495

Where D = 1.23 kPa L = 1.00 kPa W = 2.18 kPa S = 9.04 kPa

The worst load case for either roof was Load Case 3, with a factored load of 8.93 kPa for the upper roof, and 15.98 kPa for the lower roof. These are the design loads to be used when calculating the loads on the joists and beams in the roof systems.

5.3 Second Storey Floor Loads

5.3.1 Second Storey Floor Dead Loads

Design of the second storey concrete slab floor system was one of the first designs completed in this project. The dead load created by the concrete slab was required to complete the load calculations for the floor and roof loads in order to begin design of the structural steel system. The concrete slab design is discussed in Section 8.0 of this report. Table 5.6 provides the elements creating dead load at the second storey level. The values for the floor materials were selected from page 7-41 of *CISC Handbook of Steel Construction* [2].

Dead Loads	
Floor Item	Load (kPa)
Tiled ceiling	0.20
Deck slab	1.95
Finished floor	0.07
Fire protection	0.07
Ducts/pipes/wiring	0.25
Joists	0.2
Total	2.74

Table 5.6 - Second Storey Dead Loads

5.3.2 Second Storey Live Load

The client specified a live load of 7.2 kPa for the second storey floor to accommodate the addition of storage/filing units. This load corresponds to the value specified in Table 4.1.5.3 of the *National Building Code of Canada* [3], for floors containing storage/files.

5.3.3 Second Storey Floor Load Combinations

Applying the load cases specified by the *National Building Code of Canada* [3], load combinations are produced and found in Table 5.7. Only Load Cases 1 and 2 are applicable for calculation of the second storey floor load.

Ρ	а	g	е	I	10
		9	-		

Table 5.7 - Second Storey Floor Load

Load Case	Principal Loads	Companion Load	Factored Load (kPa)
1	1.4D	-	3.84
2	1.25D + 1.5L	-	14.23

Where D = 2.74 kPaL = 7.20 kPa

The worst load case for the floor was Load Case 2, with a factored load of 14.23 kPa. This design load is used when calculating the loads on the joists and beams in the floor system.

5.4 Concrete Panel Wall Loads

Tilt-up panel walls are designed to resist four main types of forces.

- Vertical Loads. The vertical loads are the loads imposed by the roof, floor, and weight of the wall itself. These loads are usually eccentric, since they are applied at the face of the panel, therefore contributing additional bending into the panel. For the North and South facing walls, the roof and floor loads are transferred to the panels through the ledger and the connecting girder beams. The one-storey columns inside the North wall support the forces from the floor; therefore very little force is transferred through the ledger. For the East and Wast facing walls, vertical loads are transferred through the connecting joists and beams.
- Lateral Loads. Lateral loads act perpendicular to the plane of the wall, such as wind or earthquake forces. To resist these loads, panels are connected at the roof and second storey floor slab.
- **In-plane Lateral Loads.** These loads act parallel to the plane of the wall due to the forces transferred through the connection of roof and floor diaphragms and resisted at the floor level. Overturning of individual panels is calculated.
- Lifting Stresses. The most critical stresses on panels are experienced during lifting. When panels reach tilt angles of approximately 30 to 60 degrees, the bending moments are increased, which may require reinforcement additional to the in-service load requirements.

The National Building Code of Canada [3], CAC Concrete Design Handbook [1], and the Tilt-Up Construction and Engineering Manual [5] have been used to calculate the loads on the concrete panel walls. As recommended in these texts, simplifying assumptions have been made when determining these loads. These assumptions are explained in the corresponding sections. Figure 3 illustrates the elevation view of a typical two-storey panel in this building with the applied forces during service conditions.

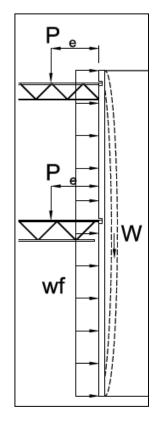


Figure 3 – Panel Loads

5.5 Vertical Loads

5.5.1 Panel Self Weight

The panel self weights were calculated based on the volume of concrete per panel and the density of normal weight concrete, $\rho = 2400 \text{ kg/m}^3$. Panels range from 16 to 56 tons. A summary of the panel weights and their center of masses can be found in Table 5.8. The location of the center of mass was calculated for each panel, in order to determine the placement of lift anchors and the point at which seismic load is applied. This is further described in Section 5.5.3.

Т	able 5.8 – Pa	nel Weights	
	Wall	Panel	Weigh
		C	27.2

	Wall	Panel	Weight (ton)
Ī		С	27.2
	North	Α	39.1
	NORTH	В	36.5
		E	20.4

Wall	Panel	Weight (ton)
	С	21.0
	A	42.4
	А	39.1
East	А	37.7
	С	31.2
	E	19.7
	G	67.7
South	Н	40.1
	G	48.8
	F	19.7
	С	20.9
Wast	A	38.1
	D	52.7
	I	38.0

The effect of the panel self-weight has a significant contribution to the P- Δ moments in the slender walls as well as the resistance to sliding and overturning. These analyses are further detailed in Section 6.0 of this report.

5.5.2 Roof and Floor Loads

The roof and second storey floor are connected to the East and Wast facing walls by the joists and spandrel beams, while the North and South walls are connected by the girder beams and ledgers. The load transferred through each joist and beam is based on its tributary area. Due to the varying joist spans, it is assumed that each joist will carry a load width equal to the greatest joist spacing, 1.5 m. Girder beams will create greater loads on the panels due to the larger tributary area. Girder beams in the South face of the building are supported by the one-storey columns and the ledger on this wall will carry very little load, therefore there is no axial load at the second storey level for this wall. Ledgers are connected to the walls with varying spans due to the presence of joist seats, therefore, spacing for ledger connection is assumed to be 1.5 m when applying loads to the panels. It is assumed that all loads act at the face of the walls and contribute to the bending moments created in the panels. A summary of the average roof, floor and ledger forces created on each wall is found in Table 5.9.

Wall	Joist Lo	oad (kN)	Beam Lo	ad (kN)	Ledger Lo	oad (kN)
	Roof	Floor	Roof	Floor	Roof	Floor
North	-	-	224.7	357.0	44.7	71.3
East	70.1	109.0	66.5	111.7	-	-
South	-	-	-	-	77.0	122.7
Wast	68.8	111.7	68.2	114.6	-	-

Table 5.9 - Roof and Floor Loads

5.6 Lateral Loads

5.6.1 Panel Wind Loads

Wind pressures are applied to the panels as a uniformly distributed lateral load. The net pressure must be calculated for each individual panel. The net pressure is the algebraic difference between external and internal pressure. The equation for calculating the wind loads is given in section 13.4.2 of the *Concrete Design Handbook* [1] as well as Clause 4.1.7 of the *National Building Code of Canada* [3]:

$$p = I_w q C_e (C_p C_g - C_{pi} C_{gi}) \tag{3}$$

Where:

Р	= Varies	Specified wind load, kPa	NBCC 4.1.7.1 (1)
l _w	= 1.00	Importance factor, Normal	Table 4.1.7.1
q	= 0.80	1/50 year velocity pressure, kPa	NBCC Appendix C
Ce	= 0.9 or 1.0	Exposure factor	NBCC 4.1.7.1 (5)
$C_p C_g$	= -1.50	External pressure coefficient	NBCC Commentary I, Fig I-8
C_{pi}	=45 or .3	Interior pressure coefficient	NBCC Commentary I, Fig I-8
C _{gi}	= 2.0	Interior gust effect factor	NBCC 4.1.7.1.6

Most of the numbers chosen for the coefficients were the recommended values. The exposure factor, C_e , is based on the height of the panel and values were calculated as 0.9 and 1.0 for the one and two-storey panels, respectively. The interior pressure coefficient, C_{pi} , was selected as being a Category 2, for panels with few openings, and values of -0.45 and 0.3 are used for forces away from the surface and forces toward the surface, respectively. Table 5.10 contains a summary of the average interior and exterior wind forces experienced on each wall. Appendix C contains a detailed list of the wind loads experienced on each panel and its calculation.

Wall	Exterior Pressure (kPa)	Interior Pressure (kPa)
North	1.7288	-1.60
East	1.7302	-1.65
South	1.7656	-1.68
Wast	1.7334	-1.65

Table 5.10 - Average Wind Forces Per Wall

5.6.2 Panel Seismic Loads

Seismic forces for the design of individual panels are required for the Lawton's Drug Store building. Calculations and factors for this calculation is obtained from Clause 4.1.8.17 of

the *National Building Code of Canada* [3]. Equation (4) is used to determine the seismic force on each panel.

 $V_p = 0.3F_a S_a(0.2)I_e S_p W_p$ (4)

Where:

Vp	= Varies	Seismic force, kN	NBCC 4.1.8.17
Fa	= 1.00	Acceleration based site coefficient	Project Geotechnical Report
		from, Class C	
$S_{a}(0.2)$	- 0 18		NBCC Appendix C, Table J2
$O_a(0, L)$	- 0.10	acceleration at 0.2 seconds	
l _e	= 1.0	Importance factor earthquakes	NBCC 4.1.8.5
Sp	= 1.02	Calculated value based on risk,	NBCC 4.1.8.17
F.		dynamic amplification and response	
		factors for building	
Wp	= Varies	Weight of panel	Section 5.1.1

The seismic forces acting on the panels occur at the centre of gravities for the first and second storey individually. When applying the loads, it is assumed that the centre of gravity for each storey occur at the mid-storey height. This assumption simplifies the application of seismic for design purposes. Table 5.11 contains a summary of the average seismic force occurring at the first and second storey of each wall. A complete list of the individual panel seismic forces and calculations is found in Appendix C of this report.

Wall	1 st Storey Seismic Load (kN)	2 nd Storey Seismic Load (kN)
North	9.54	15.65
East	11.26	20.41
South	17.27	28.34
Wast	10.69	19.41

Table 5.11 - Average Seismic Forces Per Wall

5.6.2.1 In Plane Lateral Loads

In plane lateral loads acting on each panel are due to the presence of roof and floor diaphragms in the building system. Figure 4 illustrates how in plane shear forces act on the panels.

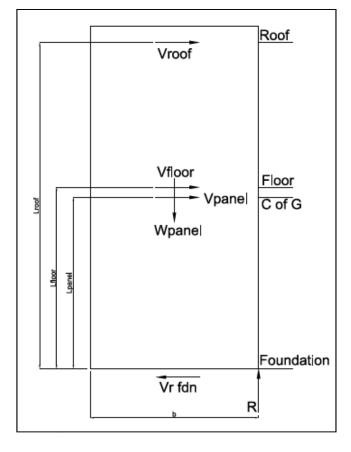
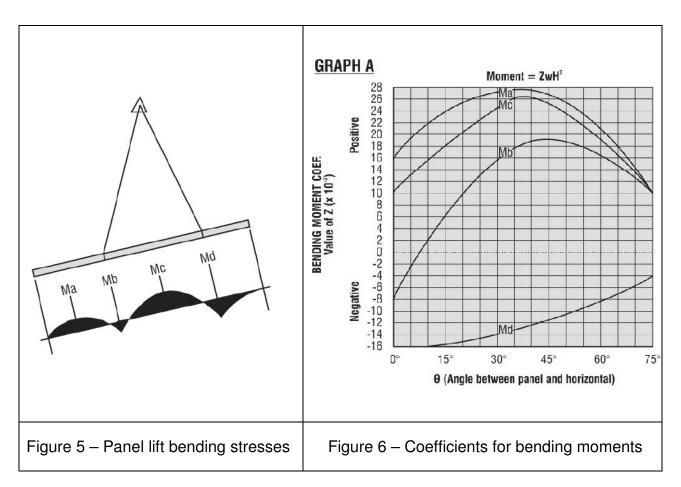


Figure 4 – Shear Loads on Panel

The CANAM Steel Diaphragm Guide [8] provides guidance for calculating the lateral shear forces created by the diaphragms. The average wind pressure on each wall was multiplied by the length of the wall to give a uniform distributed force acting per meter height of the walls. This load was transferred to two point loads, acting at the location of the diaphragms on the adjacent walls. Table 5.12 contains the lateral diaphragm forces acting on each wall at the second storey and roof level. Calculations for the lateral loads are found in Appendix C.

Wall	Floor Diaphragm Lateral Load (kN)	Roof Diaphragm Lateral Load (kN)
North	41.4	77.3
East	41.4	74.8
South	55.1	98.0
Wast	26.4	47.5


Table 5.12 - Average Diaphragm Loads

5.6.3 Lifting Stresses

The forces occurring during lifting are primarily due to the bending moments created by the self-weight of the panels. Figure 5 illustrates a typical panel during the tilt-up operation. The panel is attached to a 2-High rigging arrangement and supported by the ground at one edge during the tilt.

Meadow Burke [9], a concrete construction company based in Tampa, Florida, provides an approximation for determining the values of the moments at increasing angles from the ground. Figure 6 is the corresponding Z factor diagram for the 2-High panel lift illustrated in Figure 5. This method is conservative in determining the bending moments on the panels during the tilt-up.

The calculated bending stresses occurring during lifting are found in Appendix C.

5.6.4 Concrete Panel Walls Load Combinations

The tilt-up panel walls were designed using ACI 551.2R-10 from the *American Concrete Institute* [10]. For two-storey panels, this code recommends using the following four load cases.

Load Case	Principal Loads	
1	1.2D + 1.6S+0.8W	
2	1.2D + 0.5S + 1.0L +1.6W	
3	0.9D + 1.6W	
4	1.2D + 0.5S + 1.0L+ 1.0E	

Where D = Floor and Roof Dead Loads, kN

- S = Snow Load, kN
- W = Wind Load, kPa
- L = Live Floor Load, kN

Load case 2 presented in the code includes a live roof load instead of a snow load. The live roof load on this building is the minimum, 1.0 kPa, therefore it was conservative to exchange this load for a snow load, as snow loads are not considered in any of these load cases in the *ACI 551.2R-10* [5]. The load cases are applied in Section 6.0 of this report, during the calculations for in-service reinforcement design. The previously determined unfactored loads are used in these load combinations.

CDNL Engineering Consultants

6.0 TILT-UP CONCRETE PANEL WALLS

6.1 Design Codes and Standards

Design of the tilt-up concrete panels was completed using the *ACI 551.2R-10* from the *American Concrete Institute* [10] and Chapter 13 of *CSA A23.3-04* of the *CAC Concrete Design Handbook* [1]. Chapter 13 of the Canadian Code describes the design of one-storey tilt-up concrete wall panels, however, the approach used is simplistic when concentrated lateral loads, such as intermediate floors, are applied and advises that the results obtained must be applied with discretion. Since the design of tilt-up panels was a new area of concrete design for CDNL Engineering Consultants, many design assumptions would have to be made for the two-storey panels. In order to safely design the panels, the more comprehensive American codes were utilized as available through a manual provided by the *Tilt-up Concrete Association* [5].

6.2 Panel Descriptions

CDNL Engineering Consultants was presented with a set of architectural drawings depicting a two-storey tilt-up Lawton's Drugs Store Building. The client recommended using a panel thickness of 184.15 mm. Elevation views of the building provided a building height of 10.160 m. Using the architectural drawings, the building was divided into panels based on the discretion of CDNL. See Appendix D for complete panel schedule.

Panels were determined based on a combination of the requirements for openings and panel dimensions from Clause 23.2.3 of *A23.3-04* [1] and *ACI 551.2R-10* [5]. Clause 23.2.3 [1] provides a limitation on the panel height to thickness ratio, which affects the configuration of reinforcement. For the Lawton's Drug Store Building, each panel must have a l/t ratio less than 65, which corresponds to 2 mats of reinforcement. Also, the double layer of reinforcement is required for wall thickness greater than 160mm (13.13.3) [1]. Some requirements for openings include keeping openings at lEast 610mm from the panels edge. If required, this distance can be lowered but the opening must not have any edges cut out. Avoidance of L-shaped panels is also required as they require strongbacks to lift and take longer to set [5]. An attempt was also made to make panels of similar dimensions and characteristics which would ease design calculations and construction.

6.3 Methodology

Panels are cast horizontally on the building floor slab and are then lifted (tilted) into place. The panel design must take into account the loading which occurs in-service as well as the loading during construction. In-service loading depends on the primary moments caused by lateral wind and seismic forces, axial loads, eccentricity of connections, initial deflection, and concentrated loads from the intermediate floor and roof. As well as secondary moments caused by the axial load acting on the deflected shape. Construction loading depends on the lifting stresses and the bracing. A panel will undergo failure if the

maximum factored bending moment exceeds the resisting moment of the concrete section.

The tilt-up concrete panels will be used as load bearing wall elements spanning vertically from the main floor slab to the roof joists. This creates bending moments induced by out of plane or eccentric loading. To account for these effects a combined moment of primary and secondary moments is determined using P-delta analysis. This method is conservative when determining vertical reinforcement. The maximum moment is given by the following formula:

 $M_{max} = M_o + P\Delta$ or M_o * Moment Magnifier

The moment magnifier is used in both American and Canadian codes and is a factor of axial force, panel dimensions, and modulus of elasticity. The moment magnifier is given by the following equation:

$$\frac{1}{(1 - \frac{P_{um}}{K})}$$

Where, $K_b = \frac{48EI}{5l^2}$ P_{um} = Applied Axial Load

To properly analyze each panel, they are divided into design strips. These strips are generally chosen at each side of panel openings and are to be no larger than 12 times the panel thickness. Tributary design areas are then considered as the sum of the strips and areas above and below the openings. Joist and beam loads along with wind loads are applied to this tributary area to calculate both positive and negative primary bending moments. As Section 5.6 of this report previously described four load combinations were used to determine the worst possible loading scenario during service loading.

The design process requires steel reinforcement to be chosen for the design strips, and the resisting moment created by the steel must be compared to the applied maximum positive and negative bending moments. A simple check is completed to ensure that moment resistance is tension controlled by the steel. If the resisting moment is less than the applied moment the steel reinforcement must be increased. An iterative process is undertaken until all resisting moments pass. As with any structural design, actual and maximum deflections are checked. For areas above and below panel openings, minimum steel reinforcement is used. As per *ACI 551.2R-10* [5], a maximum spacing of 450 mm is used.

In most cases for tilt-up panel design maximum moment is experienced during the installation. These moments vary depending on the lift scenario used in the *Meadow Burke Tilt-up Manual* [9]. Using the *Super-lift III Bid* chart along with panel dimensions, lift combinations can be found. These lift cases can be found in Appendix D. Meadow Burke has also supplied a bending moment coefficient to approximate lifting stresses using panel

weight, dimensions and angle of inclination. This moment is also compared to service loading conditions to calculate maximum required steel reinforcement. In some cases, more reinforcement was added to account for additional lift stresses.

Horizontal reinforcement is used in tilt-up design to resist shrinkage and temperature effects. This reinforcement is not used as primary reinforcement due to the fact the panel is much higher that is it wider, causing higher stresses in the vertical direction. Diagonal reinforcement is required at corners of all openings and must be extended 610 mm beyond the opening. All panel calculations are found in Appendix D.

In order to design the strip of a panel the following steps must be taken:

Veritcal stress at mid height of panel = $\frac{2400 \times t \times h \times 3/4 \times w_{tributary}}{1000^{\circ}3 \times (9.81/1000)}$

To determine the axial compressive forces acting at the midheight of the first storey panel the following equation is used:

 $P_{um} = 1.2(D_{floor} + D_{roof} + Vertical Stress midheight) + 1.6S_{roof} + 0.8W_{roof}$

To ensure that the compressive stress is not exceeded by the applied forces and dead loads the following condition must be true:

 $P_{um}/A_q < 0.6$ f'c

This condition is more specifically applied to slender legs of panels where stresses are much higher.

Both the floor and roof structures apply eccentric loading to the panel and create moments and contribute to the maximum positive and negative moments. The following equations show how these moments are determined.

 $M_1 = (1.2D_{\text{roof}} + 1.6S_{\text{roof}} + 0.8W_{\text{roof}}) \times e/1000$ at roof

 $M_2 = (1.2D_{floor} + 1.6L_{floor}) \times e/1000$ at floor

Maximum moments and their corresponding locations are determined by modeling the design strips as beams with pin connections in Beam Visualizer [11].

Now that these maximum moments have been determined a moment of resistance must be calculated using an assumed reinforcement area.

 $W_{above} = (h/1000 - xM_{max}) \times A_g \times 2400 \times (9.81/1000)$

 $P_{um} = 1.2(D_{floor}+W_{above}+D_{roof})+1.6(W_{roof}+L_{floor})+0.8S_{roof}$

 $A_{se} = A_{s} + (P_{um}/fyx1000)x(t/2d)$

An equivalent stress block is used to determine the concrete and steel stress at the balanced condition, immediately before cracking. This equivalent stress area is determined using the following equations:

a = Ase x fy / 0.85 x w x, c = a/0.85

To ensure that the panel will be tension controlled and not result in brittle catastrophic failure a check is made to determine that stresses are tension controlled.

c/d < 1

The cracking moment is then determined using the following equation:

 $M_{cr} = \text{fr x (1/6) x b x t^2 / 1000^3 x 10^3}$

The resting moment due to the assume area of steel is the calculated using the following equation:

 $M_n = 0.9 \text{ x Ase x fy x d-a/2 / 10^6}$ (Resisting Moment)

The resisting moment must be greater than the cracking moment.

 $M_n > M_{cr}$

The final check is to compare resistive moments to moments using p-delta effects. Using the moment magnifier determined using the following equations the maximum applied moment can be found.

 $I_{cr} = E_s/E_c \times A_{se} \times (d-c)^2 + w/1000 \times c^3/3$

 $K_b = 48 \times E_c \times I_{cr} / 5 \times Ic^2 / 1000$

 $M_u = M_{maxplus} / 1 - P_{um} / 0.75 Kb$

As stated earlier a deflection check is calculated and compared to maximum deflection limits.

deltau = Mu / 0.75Kb

CDNL Engineering Consultants

6.4 Code Comparison

As stated previously the Canadian Concrete codes could not be relied upon for the design of two-storey panels but it could be relied upon for one story panels. Therefore in order to verify our design method for two story panel the one-storey panels were designed using the Canadian Code as well as the two-storey method. The results showed that approximately the same number of reinforcing bars was used for both methods. The maximum difference in the number of bars was two.

6.5 Overturning

It is important when properly analyzing the panel to determine whehter or not the panel will overturning under the applied forces. Resistance to overturning is obtained from a combination of panel weight, tributary roof or floor loads, edge connectors and tie down anchors if applicable. This factored overturning moment for the panel should be less than the resisting moment of the panel. Each of the 18 panels used for this building all pass the overturning moment check meaning that they do not require any additional anchoring to the foundations. This is likely due to the weight of these two-storey panels as well the connection of the intermediate floor along with its large associated load.

6.6 Reinforcement

Reinforcement in the panels was chosen to be 15M structural steel reinforcing bars based on the maximum bar diameter which is 10% of the wall thickness. This number of bars is dependent on the panels dimensions and the number of openings. However there are minimum values for both horizontal and vertical reinforcement definied as 0.0015Ag and 0.0020Ag respectively. A closer bar spacing is tolerated in tilt-up walls due to being formed and poured as flat open faced slabs.

6.7 Connections

Beam and girder connections to panels were achieved using bearing plates cast in the concrete. Each bearing plate was custom designed using 3/4 inch diameter studs. Only shear is check for these bearing plates since pullout will not be considered since there are no tensile forces acting on the beams. Angle plates are then shop welded to the bearing plates to accommodate bolted connections for ease of installation. These welds are typically 10mm welds. Finally, the bolted connection to the beam or girder is checked for shear, pull out and bearing.

The panels are also connected to the intermediate slab floor using angle members

and smaller bearing plates. This connection is located slightly above the seats for the joist connections and located approximately in the middle of the seats to avoid any interference. There are no panel to panel connections for the particular design due to the fact that all overturning moments were no significant to cause any overturning.

6.8 Lifting

Lifting of the panels, construction loading will likely be higher than loading experienced in service as a wall. The configuration of the panel, is the location of its openings will determine its lift points. *Tilt Max* [12], a program for determining the lift points was provided by the company which will actually be doing the lift, JW Lindsay. The program incorporated the recommended capacity of the pickup inserts. The lifting points have a horizontal lift points that matches the horizontal center of gravity while the center of the lift in the vertical direction is slightly higher than the center of gravity allowing the tilt to occur about the lower edge. To determine the moments applied on the panel during lifting these weird little diagrams from Meadow Burke [9] were used which provide factors to apply to those moments.

7.0 STRUCTURAL STEEL

7.1 Structural Building System

All interior structural elements of this building are composed of structural steel members selected from the *CSA-S16-01* [2]. The tilt-up concrete panel walls provide a rigid "box-like" frame on the outside of the building, shielding all interior members from the lateral loads subjected on the building from wind and seismic forces. The structural steel is designed to carry the loads on the building from the roof and second storey floor slab.

7.2 Structural Columns

The original building design specified by the client required six interior structural columns to provide the main support for the roof and floor slab. After calculating the loads on the concrete panel walls by the steel beam girders, it was decided to add two one-storey columns at the front (South) face of the building to transfer the high loads created at the second storey floor level and remove this load from the panels. Also, a rigid steel frame was required in the loading bay area (North wall) to transfer the lateral loads between concrete panels and tie in the beams at the roof and second storey floor level. The frame contains two two-storey columns and is discussed in a later section.

In total, six interior two-storey columns and two exterior one-storey were designed. The interior columns are designed to support the axial loads and bending moments created by the building's roof and floors. The one-storey columns are designed to transfer the loads from the second storey floor at the North face of the building to remove the high loads from the panels.

Table 7.1 includes the sections and dimensions required for the columns. All members were analysed for compression and buckling using Clause 13 of *CAN/CSA-S16-01* [2].

Column	Steel Section	Height (m)	Max. Compression (kN)	Max. x-x Bending Moment(kN-m)	Max. y-y Bending Moment(kN-m)
C-3	W360x287	9.4205	1691.32	1023.04	154.01
C-4	W360x287	9.585	1940.68	962.38	8.03
C-5	W360x287	9.4205	1940.68	1015.14	8.03
C-7	W360x287	4.630	563.22	1024.15	0
E-3	W360x287	9.2105	1844.87	180.99	154.01
E-4	W360x287	9.585	2116.87	47.11	54.62
E-5	W360x287	9.2105	2116.87	274.39	8.03
E-7	W360x287	4.630	563.22	1024.15	0

Table 7.1 - Structural Column Design

Interior structural steel beams run parallel to the joist system along the column lines and tie the columns to each other and the exterior walls. The client specified using beams as opposed to tie-joists because of the added structural stiffness of the system. These beams carry approximately the same load as each joist of similar spacing.

Structural beams are designed to support the roof and floor in the East-Wast direction. The members carry the same loads as the joists running in that direction and are connected to the underside of the steel decks.

Table 7.2 contains the sections and dimensions required for the beams. The maximum shear, bending, and deflection seen by each member is also included in this table. Beams were designed for bending, shear and deflection using Clauses 13 of *CAN/CSA-S16-01* [2].

Beam		Steel Section	Length (m)	Max. Shear (kN)	Max. Bending Moment (kN-m)	Max. Deflection (mm)
3 B-C	Floor	W250x80	8.3157	92.53	190	22.85
3 6-0	Roof	W200x59	8.3157	55.52	114	22.85
4 B-C	Floor	W250x80	8.3157	92.53	190	22.85
4 0-0	Roof	W200x59	8.3157	55.52	114	22.85
E D O	Floor	W250x80	8.3157	92.53	190	22.85
5 B-C	Roof	W200x59	8.3157	55.52	114	22.85
0 O F	Floor	W250x80	10.4774	118.13	277	27.57
3 C-E	Roof	W200x59	10.4774	70.88	166	27.57
405	Floor	W250x80	10.4774	118.13	277	27.57
4 C-E	Roof	W200x59	10.4774	70.88	166	27.57
	Floor	W250x80	10.4774	118.13	277	27.57
5 C-E	Roof	W200x59	10.4774	70.88	166	27.57
250	Floor	W250x80	10.0157	111.16	310	29.17
3 E-G	Roof	W200x59	10.0157	66.99	186	29.17
450	Floor	W250x80	10.0157	111.16	310	29.17
4 E-G	Roof	W200x59	10.0157	66.99	186	29.17
E E O	Floor	W250x80	10.0157	111.16	310	29.17
5 E-G	Roof	W200x59	10.0157	66.99	186	29.17

Table 7.2 - Structural Beam Design

7.4 Roof and Floor Girders.

Interior girder beams run perpendicular to the joist system along the column lines at the roof and second storey floor level. Due to the large tributary area of these girders, the members are subjected to high loads and moments and larger sections were required

to handle these conditions.

Table 7.3 contains the sections and dimensions required for the beams. The maximum shear, bending, and deflection seen by each member is also included in this table. Beams were designed for bending, shear and deflection using Clause 13 of *CAN/CSA-S16-01* [2].

Girder		Section	Length (m)	Max. Shear (kN)	Max. Bending Moment (kN-m)	Max. Deflection (mm)
C 2-3	Floor	W530x182	6.6055	357.00	597.98	
62-3	Roof	W410x132	6.6055	224.06	375.30	27.92
0.0.4	Floor	W530x182	8.507	494.00	1099.15	
C 3-4	Roof	W410x132	8.507	309.98	689.69	37.08
0.4.5	Floor	W530x182	8.607	499.60	1124.10	
C 4-5	Roof	W410x132	8.607	313.53	705.43	37.50
057	Floor	W530x182	8.607	494.00	1099.15	
C 5-7	Roof	W410x132	8.607	309.98	689.69	37.08
F 0 0	Floor	W530x182	6.850	389.40	652.25	
E 2-3	Roof	W410x132	6.850	244.40	409.37	27.92
F 0 4	Floor	W530x182	8.507	538.75	1198.72	
E 3-4	Roof	W410x132	8.507	338.13	752.33	37.08
F 4 F	Floor	W530x182	8.607	545.00	1226.25	
E 4-5	Roof	W410x132	8.607	341.98	769.44	37.50
E 5-7	Floor	W530x182	8.607	538.75	1198.72	
E 3-7	Roof	W410x132	8.607	338.13	752.33	37.08

7.5 Joist Systems

Joist systems spanning in the East-Wast direction are selected from the *CANAM Joist Catalogue* [6]. Joists are provided for the roof, second storey floor and lower loading bay roof.

7.5.1 Roof Joist System

The roof joist design was commenced and completed on schedule. This design was similar to the second storey floor joists therefore the designs were completed simultaneously. The roof joist selection is based on the calculated live loads and spans specified in the architectural drawings. The roof joists will be subjected to updraft and downdraft loads from the winds as well as snow and drift loads. The most extreme loads were selected from the calculations described in Section 3.2 of this report and used for the joist design. As specified by the client, CDNL is to assume there are no mechanical

systems on the roof that would require additional support from loading and operating conditions. The joist selection was made using the Joist Selection Tables found in *CANAM's Joist Catalogue* [6]. The joists are currently being analysed using Clause 16 of the *CISC Handbook of Steel Construction* [2]. A summary of the final design elements for the joists is found in Table 3.8. The design calculations can be found in Appendix C of the report.

Table 7.4 - <i>Roof Joists</i>

Depth (mm)	Spacing (m)	Number of Joists Spans	Span (m)	Factored Load per Joist (kN/m)	Mass of Joist (kg/m)
550	1.34-1.56	90	8.225 – 14.1	13.40	24.6
650	1.30	5	7.5	20.77	31.8

7.5.2 Floor Joist System

The open web steel joists for the second storey floor have been selected based on the calculated service loads and spans specified in the architectural drawings. The selection was made using the Joist Selection Tables found in *CANAM's Joist Catalogue* [6]. The joists have analysed using Clause 16 of the *CISC Handbook of Steel Construction* [2]. Special considerations were made in the analysis to account for floor vibrations as per *CANAM's Joist Catalogue* [6]. A summary of the final design elements for the joists are found in Table 7.5. The design and analysis calculations can be found in Appendix D of the report.

Table 7.5 - Second Storey Floor Joists

Depth (mm)	Spacing (m)	Number of Joists Spans	Span (m)	Factored Load per Joist (kN/m)	Mass of Joist (kg/m)
650	1.34-1.56	19	8.225 – 14.1	21.0	31.8

7.6 Loading Bay Frame:

The North facing wall contains a loading bay, behind which there is no concrete panel to complete the transfer of lateral loads to the other panels. A rigid frame is required to complete the transfer of these loads and support the girder beams running along column line E. This frame will be attached to the concrete walls by welds to anchored bearing plates.

The loads to be transferred consist of the shear loads created by the lateral wind and seismic forces. The loads were assumed to transfer entirely through the connections to the concrete panel and into the frame beams. Welded moment connections were

recommended by the client for the frame connections. Figure 7 is an elevation view of the frame, as seen on the North face of the building.

W360x91	
W460x144	
W360x162	W360x1

Figure 7 – Loading Area Frame

Due to the complex nature of this frame, the structure was designed in *S*-Frame [10], and members were recommended based on this analysis. Table 7.6 contains a summary of the design utilization ratio results based on the S-Frame analysis.

The beams and columns were checked for bending, shear, slenderness and axial compression based on Clause 13 of *CAN/CSA-S16-01* [2]. The governing cases for each member are also given in Table 7.6.

Member	Section	Bending	Compression	Shear	Slenderness	Governing Check
Lower Beam	W460x144	0.970	0.825 (axial)	0.363	0.176	Bending
Upper Beam	W360x91	0.935	0.839 (axial)	0.368	0.191	Bending
Columns	W360x162	0.903	0.152	0.161	0.283	Beam- Column Stability

Table 7.6 – Loading Frame Design Summary

7.7 Connections

There were a number of different connections required for the structural steel system. Table 7.7 contains a summary of the type and number of connections made for all structural elements. Connection designs were completed using *CAN/CSA-S16-01* [2] and *CSA A23.3-04* [1].

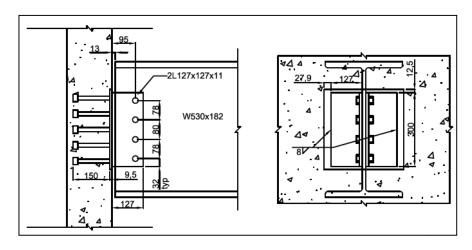


Table 7.7 –	Connection	Summary
-------------	------------	---------

Connection Type	Number of Connections
Beam to Panel	16
Joist to Panel	86
Beam to Column (Bolted)	50
Column Base Plates	10
Ledger to Panel	146
Beam to Beam Seats	2
Welded connections	8

It was recommended by the client to avoid welded moment connections where possible. Bolted connections are preferred due to the more expensive costs of welding and associated expenses of delays of welding due to weather.

Figures 8 – 14 illustrate the detailed connections found in the building.

Figure 8 – Beam to Panel Connection

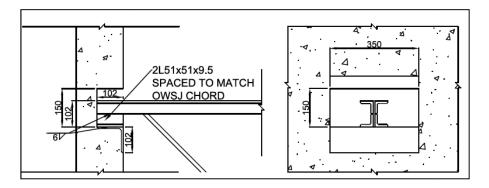
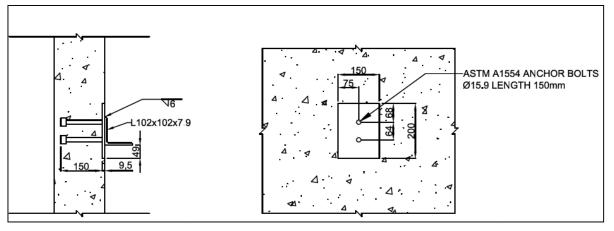


Figure 9 – Joist to Panel Connection

W360x287 W360x287 W360x287 W530x182 W530x182



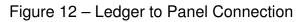


Figure 11 – Column Base Plate Connection

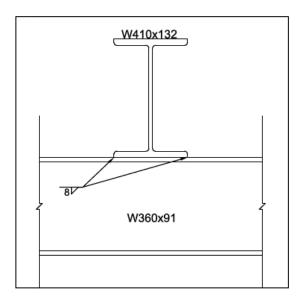


Figure 13 – Beam to Beam Seats

 2PL175x175x20

 10<125</td>

 10<125</td>

 10<125</td>

 10<125</td>

 10<175</td>

 5<320</td>

 2PL175x175x20

 10<175</td>

 5<320</td>

 2PL175x175x20

 10<125</td>

 W360x162

Figure 14 – Welded Frame Connection

7.8 Steel Diaphragms

Steel diaphragms are used at the roof and second storey floor levels to provide resistance to the lateral loads created on the building due to wind and seismic forces. *CANAM's Steel Deck Diaphragm Guide* [8] provides guidance for installation of steel deck to be used as a horizontal brace. The fluted decks provided at the roof and second storey floor level are equivalent to the web of a horizontal beam whose flanges are the perimeter structural members connected to the deck [8]. The deck is connected to the perimeter ledger to ensure transfer of the shear forces.

The maximum lateral force acting on the walls of the building is 23.7 kN/m. This load is calculated in Appendix D of this report. The total resistance for this force is created by connecting the joists to the steel deck using 19 mm puddle welds and connecting the adjacent deck spans with button punches [8]. Table 7.8 contains the required connections for the steel diaphragms and the total resistance provided by at the roof and second storey floor level.

Diaphragm	Deck		Connections		Resistance	Remarks
Diapinagin	Profile	Thickness	At Support	At Side-Lap	nesistance	nemarks
Floor	P–3615 Composite	0.91 mm	Puddle Weld 19 mm 36/4	Button Punch @ 600 mm	11.4 kN/m	Weld deck at perimeter ever 150 mm
Roof	P-3615	0.91 mm	Puddle Weld 19 mm 36/7	Button Punch @ 150 mm	44.1 kN/m	Weld deck at perimeter ever 150 mm

Page | 32

8.0 CONCRETE SLAB FLOOR

The second storey concrete slab floor has been selected as a composite slab which will be supported on open-web steel joists and steel beams. As previously stated, the client specified a live load of 7.2 kPa be used on this floor to account for storage units. The factored load applied on the floor is 14.23 kPa, as determined in Section 5.3. The steel decking in which the concrete slab will be formed has been selected from *CANAM Steel Deck Catalogue* [7]. A cross section of the slab is detailed in Figure 14.

The slab was checked and reinforced for maximum bending moments and shear forces. As a conservative approach, the concrete slab was designed as a flat slab with joist supports at 1340-1560 mm spacing. By neglecting the steel deck, the concrete slab steel reinforcement has been selected as welded wire mesh along with a concrete strength of 35 MPa. Detail of the slab reinforcement is given in Table 8.1. Slab design calculations can be found in Appendix D.

Total Load (kPa)	Thickness (mm)	Rein. Type	Diam. (mm)	Spacing (mm)	A _s Req. (mm ²)	A _s Act. (mm ²)	Shear Load (kN)	Shear Resistance (kN)
12.779	64	A193	7	200	65	192	10.9	33.2

Table 8.1 - Second Storey Slab Floor

9.0 ROOF SYSTEM

The materials to be used in the roofing system were specified in the architectural drawings. The only elements of design required for this system were the selection of the steel deck and the steel roof framing. Roof joist design is discussed in Section 7.5. Table 9.1. contains a summary of the materials used in the roofing system and the dead loads contributed to the weight of the roof.

Table 9.1 - Roofing System

Material	Dead Load
Modified Bitumen Cap and Base	0.27 kPa
6 mm Protection Board	-
100 mm Rigid Insulation	0.07 kPa
12.5 mm Exterior Grade Gypsum Board Sheathing	0.08 kPa
12.7 mm Gypsum Board	0.01 kPa
Metal Deck	0.015 kPa

The steel deck was selected using the *CANAM Steel Deck Guide* [7]. The selection was made based on the factored service loads on the roof and the span specified in the architectural drawings. Considerations were also made based on the client's preference for a 38 mm deck depth. Table 9.2 contains a summary of the design criteria for the steel deck selected.

Table 9.2 - Steel Deck

Deck	Depth (mm)	Max. Span (mm)	Weight (kg/m²)	Factored Service Load (kPa)	Specified Dead Load (kPa)	Specified Snow Load (kPa)
P-3615 Type 20, Triple Span	38	1500	10.07	10.59	0.5	3.02

The steel roof framing ledger has been designed as an L102 x 102 x 7.9, connected to the wall panels at approximately 1.5 m spans. Calculations for the framing are found in Appendix D.

10.0 COST ESTIMATION

The detailed cost estimate is broken up into five sections: the second floor slab, second floor steel, roof steel, steel columns, and tilt-up panels. The estimate also includes additional costs for engineering and other contingencies. Based on consultation with the client the cost of most steel materials per tonne was assumed to be \$3800.00. This cost includes all shop work, transportation to site and installation. The cost estimate can be found in Appendix E.

The second storey floor slab is broken into three components: the concrete, steel reinforcement, pumping, and finishing. The volume of concrete was estimated using the 64mm cover over the composite steel decking. The flutes have been calculated to contain another 23% concrete. Capital Ready Mix supplies 35 MPa concrete at \$176.00/m³. Reinforcement has been determined to be A193 welded wire mesh. The quantity of this mesh was calculated using the total surface area of the slab floor. Each piece of welded wire mesh is 2.15 m x 5m with a weight of 32.8kg. Supply, pumping, and finishing of the slab floor was estimated to be completed in a 24 hour time period. Costs are determined at an hourly rate, volume pumped and surface area. These costs were also supplied by Capital Ready Mix.

The second storey steel and roof steel are very similar cost estimates. Both require open web steel joists, steel beams, steel girders and decking. As with most steel costs, values were determined using gross tonnage. Total lengths of each member were determined and used along with the weights per unit length to calculate steel tonnage. Steel decking for both roof and floor were determined as Type 18 which have a mass of 13.26 kg/m². This value was used to determine the total weight of steel decking.

Concrete tilt-up panel estimates were broken into four components: concrete, steel reinforcement, bearing plates and lift inserts. Installation of the tilt-up panels will be determined by Lindsay's Construction. Concrete volumes were calculated using a panel thickness of 184.15mm. These volumes were obtained using calculations for panel weight which were used for design purposes. After determining number of 15M and 10M steel reinforcing bars in each panel total lengths were found using drawings. An average of 3.57 tonnes of steel per wall gave an approximate cost of \$55,000.00. The final structural steel components are the custom bearing plates used for steel connections to panels. The particular items do not have an exact cost and have been estimated by the client at \$125.00 per plate.

The final cost of the structural design of the Lawton's Drug Store Building was estimated at \$656,570.27. Compared to Lindsay's price of \$638,030.00 this was accurate to 2.9%.

11.0 ACKNOWLEDGEMENTS

The following people have provided assistance and guidance in the development of this project.

Dave Leonard, Karl Green, Lloyd Nash and Fred Hiscock of CHIMO Construction Management Ltd.

Geoff Jamieson of Lindsay Construction, Nova Scotia.

Dr. Amghad Hussein

Dr. Steve Bruneau

[1] Cement Association of Canada. (2005). Concrete Design Handbook (A23.3-04), Third Edition.

[2] Canadian Institute of Steel Construction. (2006). Handbook of Steel Construction (CSA-S16-01) Ninth Edition.

[3] National Research Council of Canada: Institute for Research in Construction. (2005). *National Building Code of Canada Part 4, Structural Design*.

[4] Smith, Laurence; Structure Magazine (April 2009) *Tilt-Up Engineering A-Z.* Pages 12-15.

[5] Tilt-Up Concrete Association (2007). The Tilt-Up Construction and Engineering Manual (*ACI 551.2R-10*).

[6] Canam Group Inc. (2010). *Joists: Joist Catalogue/Joist Design (Metric)*. Retrieved January 26, 2010, from CANAM Canada, Technical Publications: <u>www.canam-steeljoist.ws</u>

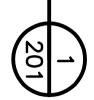
[7] Canam Group Inc. (2010). *Steel Deck.* Retrieved January 26, 2010, from CANAM Canada, Technical Publications: <u>www.canam-steeljoist.ws</u>

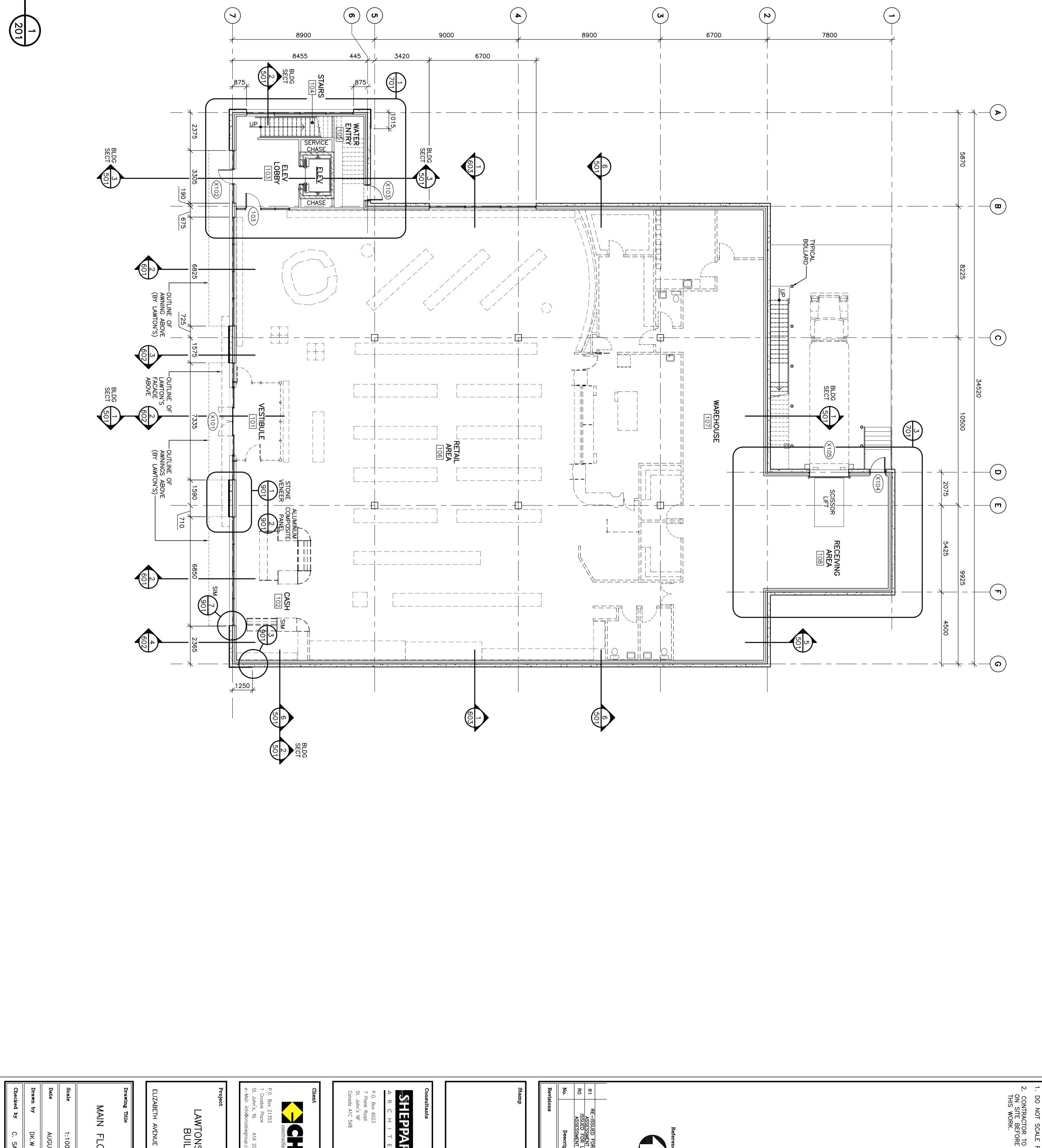
[8] Canam Group Inc. (2010). *Steel Deck Diaphragms.* Retrieved February 18, 2010, from CANAM Cananda, Technical Publications: <u>www.canam-steeljoist.ws</u>

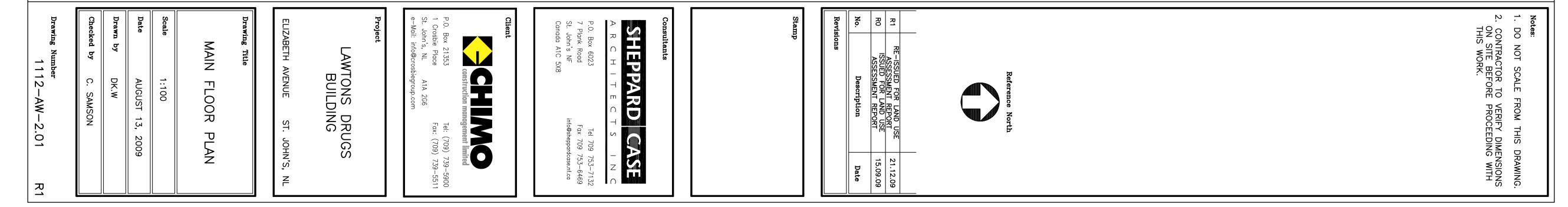
[9] Meadow Burke (2010). *Tilt-up Catalog.* Retrieved March 18, 2010 from: <u>www.meadowburke.com</u>

[10] S-Frame Structural Analysis Software.

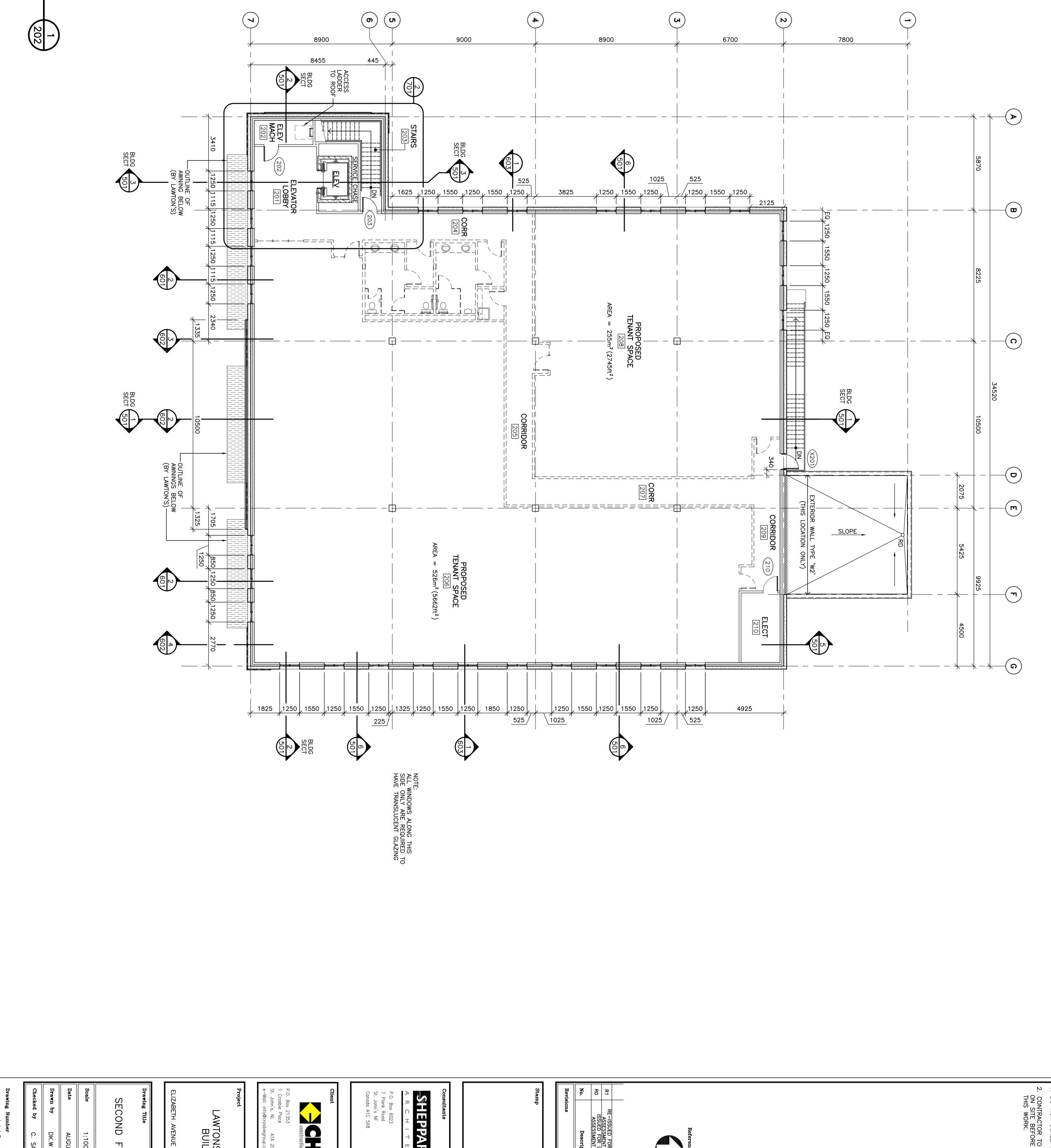
[11] Beam Visualizer Structural Analysis Software.

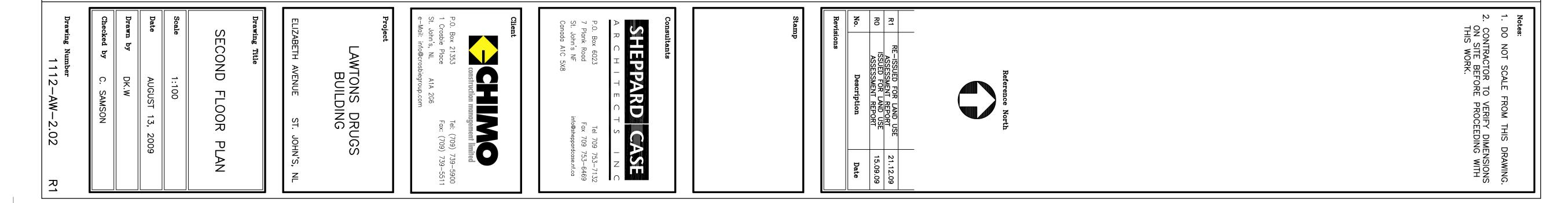

[12] Tilt Max, Tilt-up concrete lifting Software

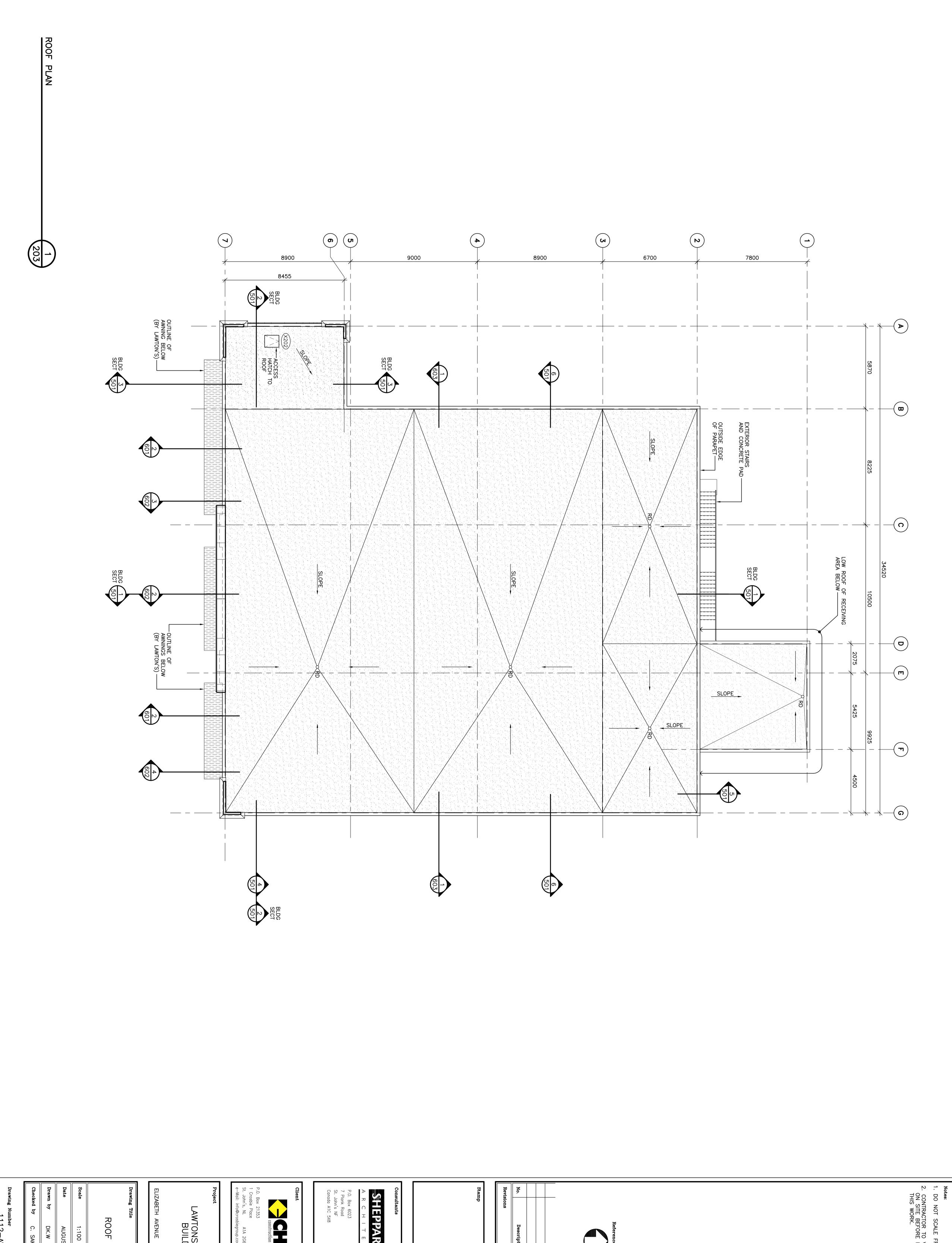

Page | **A-1**

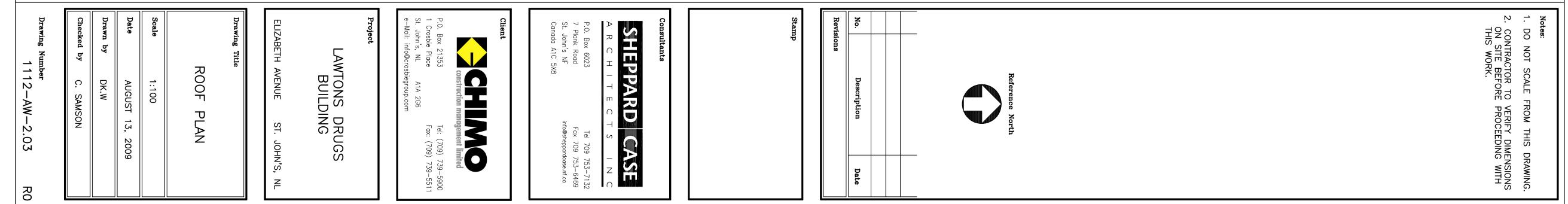

Appendix A ARCHITECTURAL DRAWINGS

MAIN LEVEL FLOOR PLAN

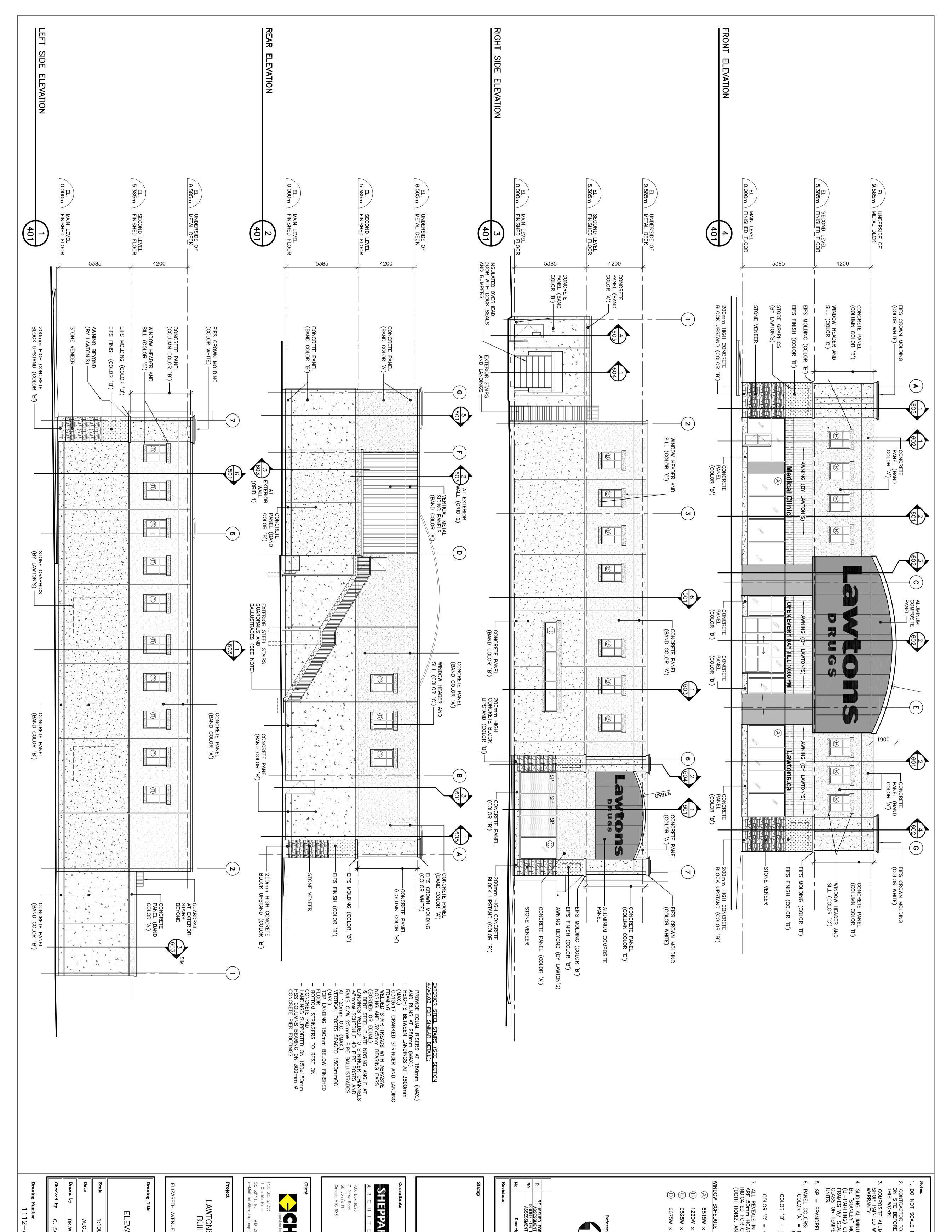


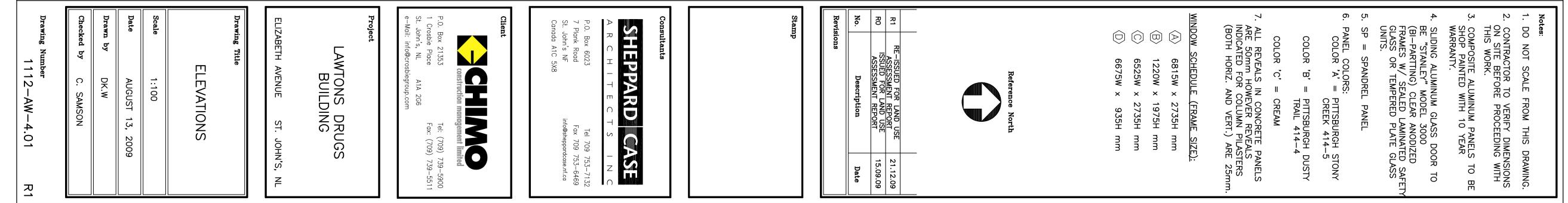


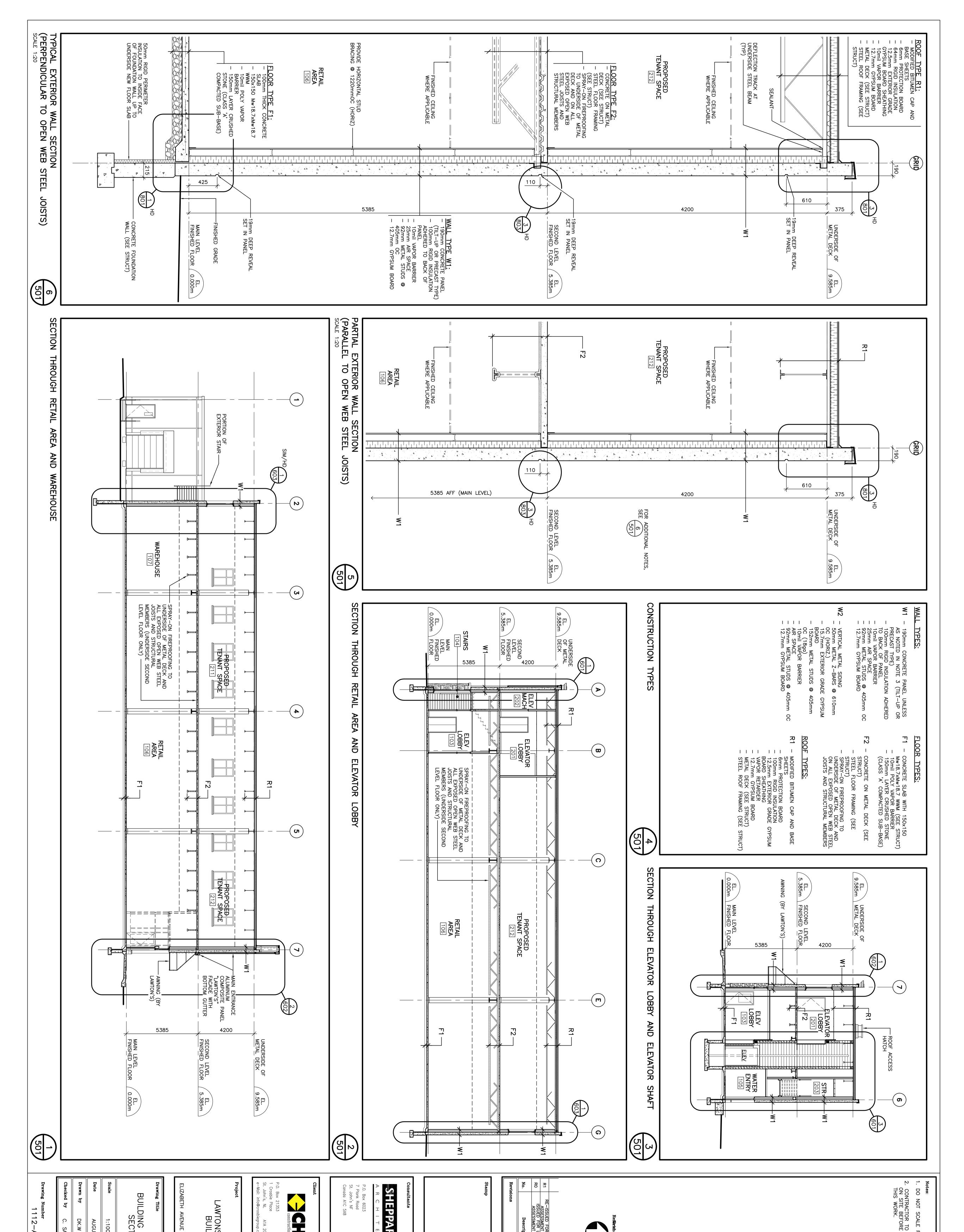


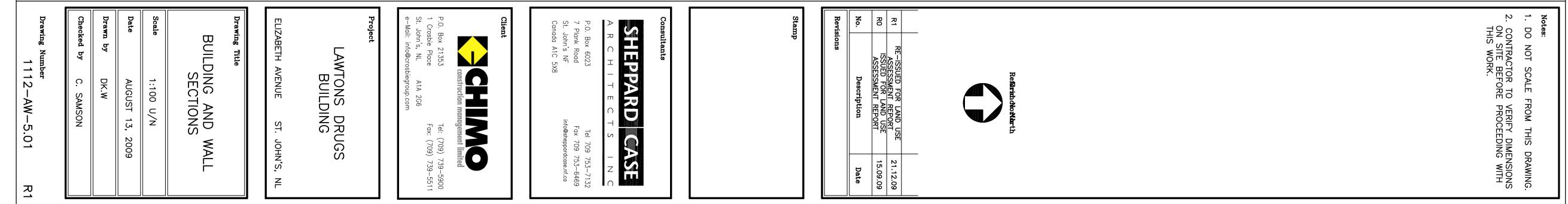


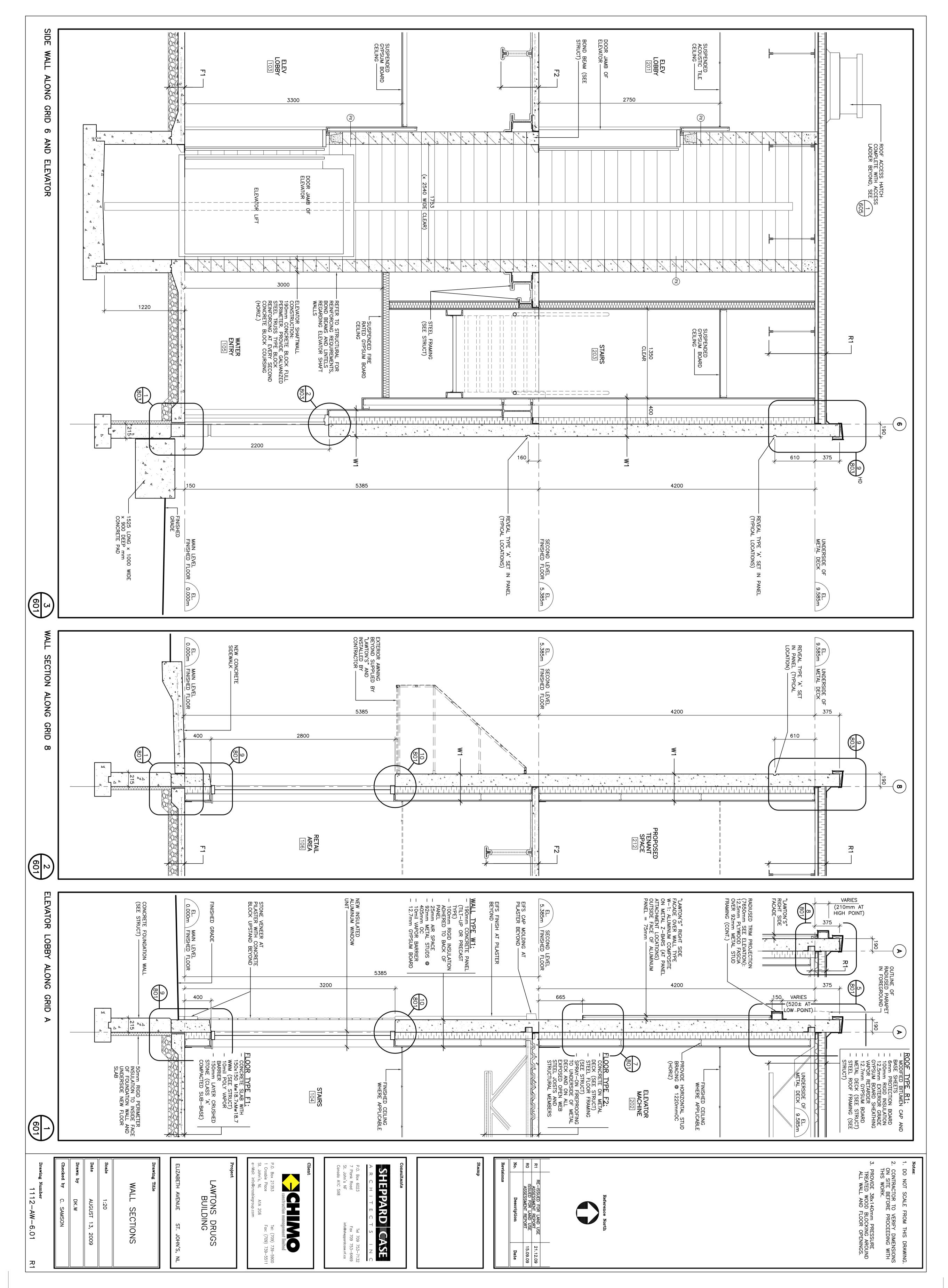
SECOND LEVEL FLOOR PLAN

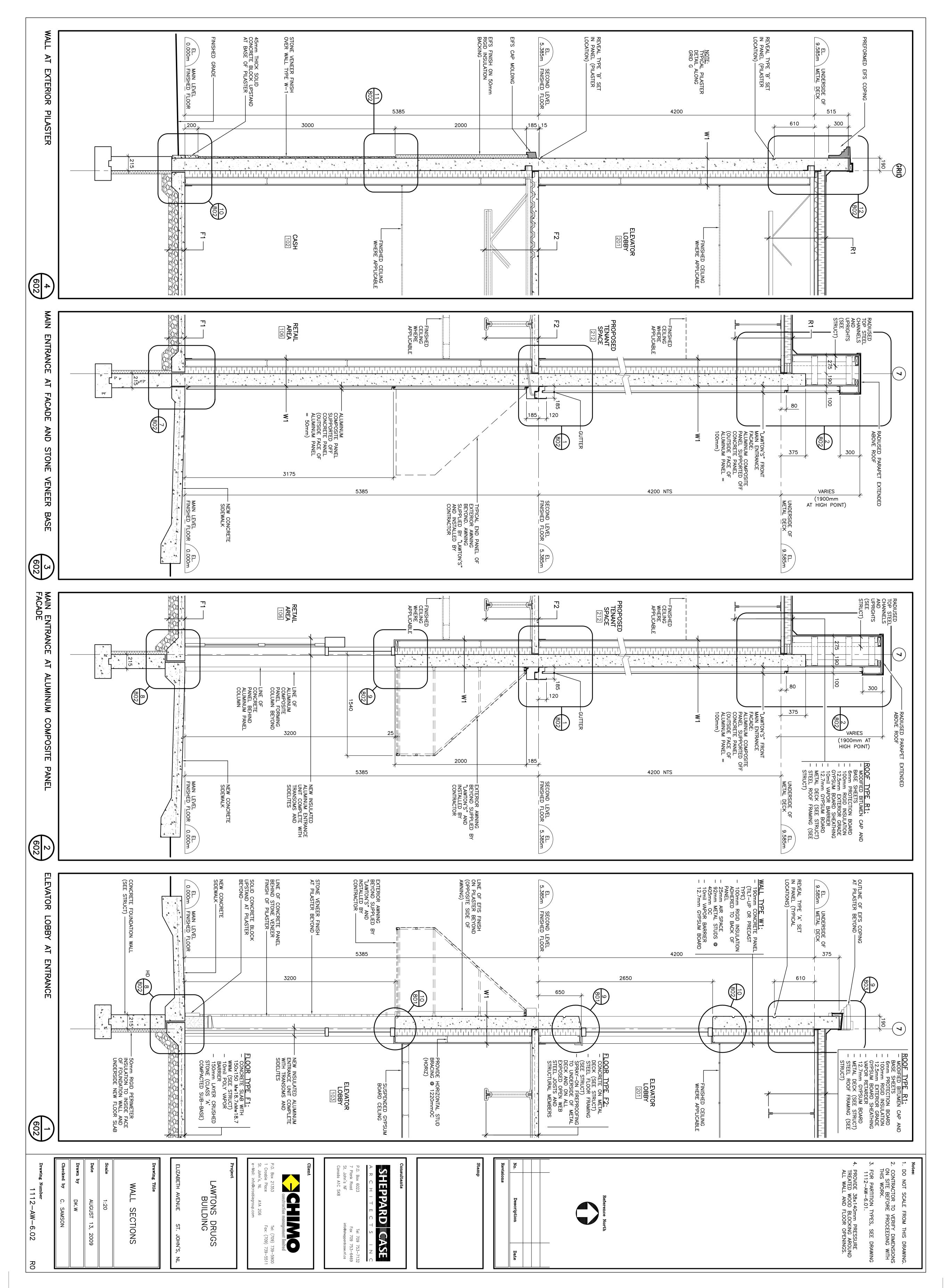


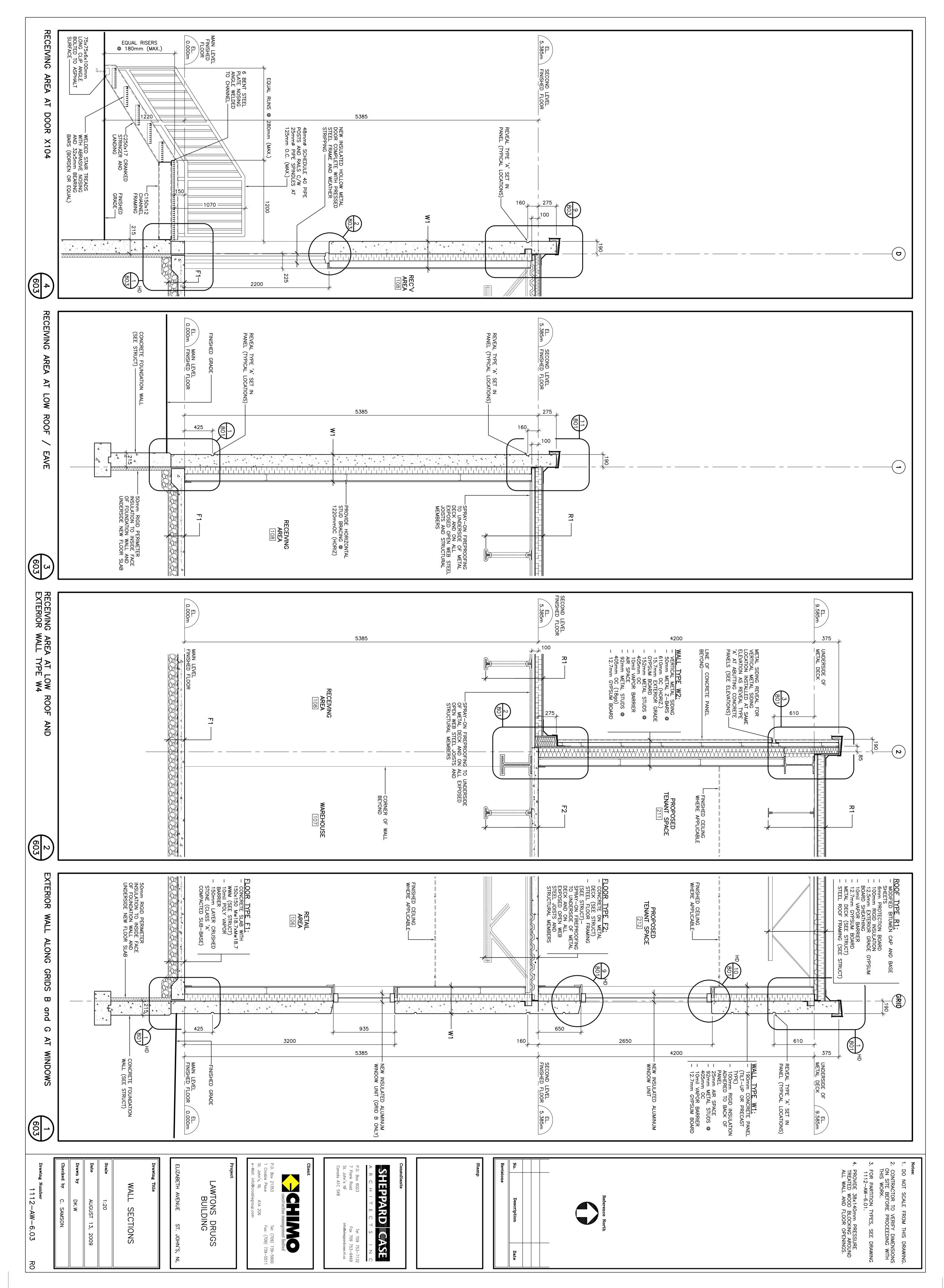


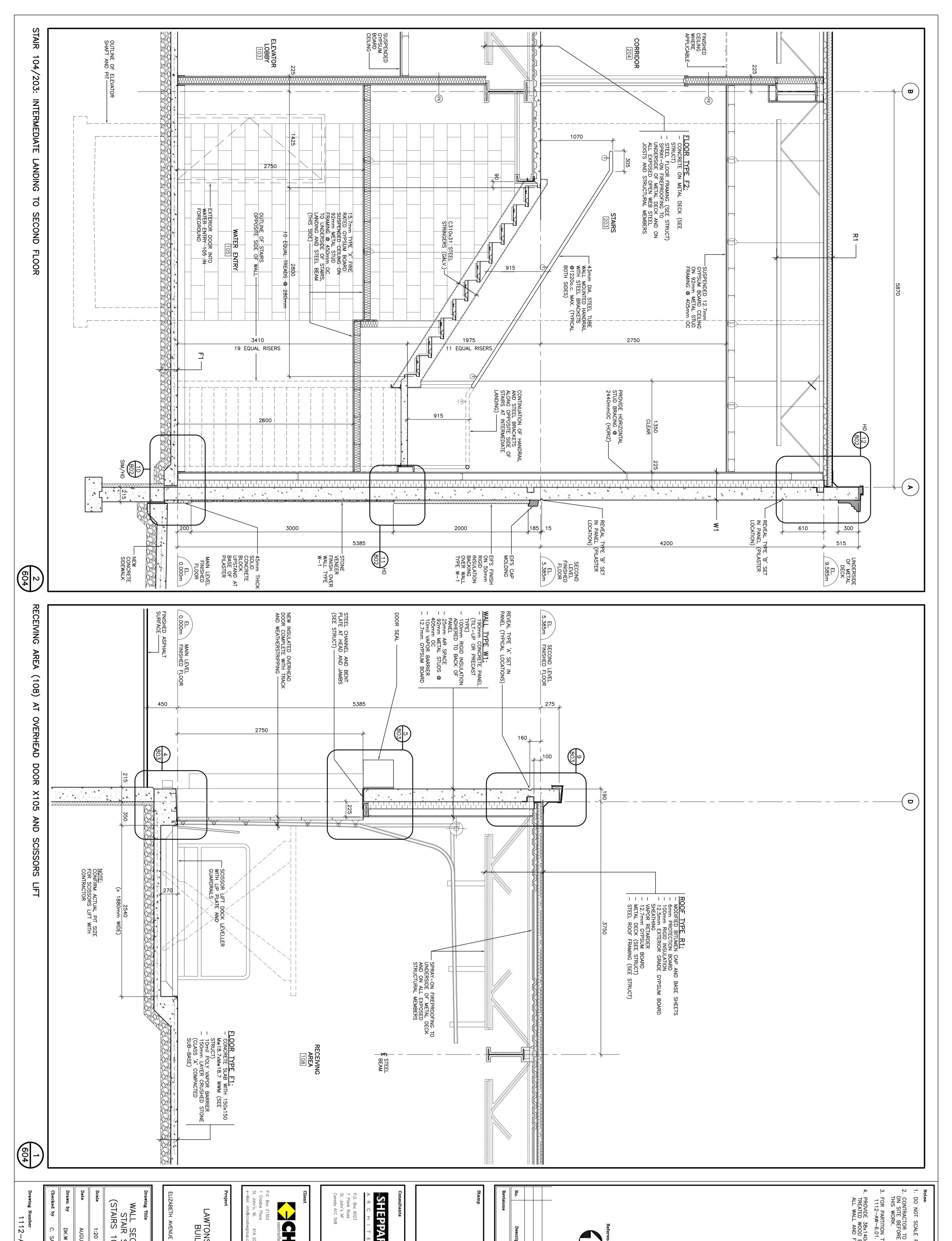


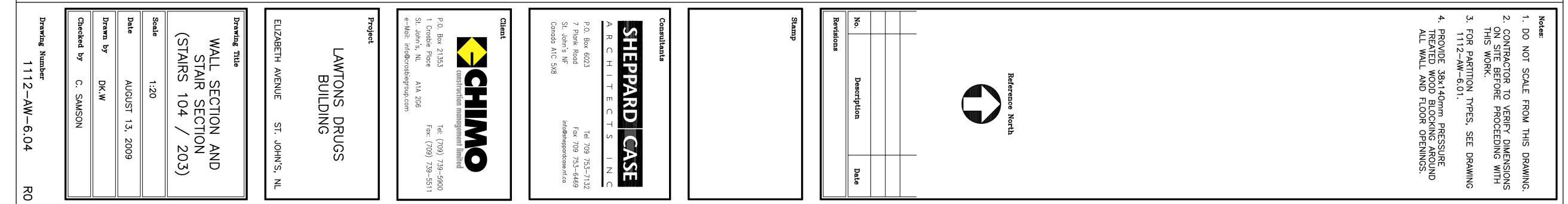


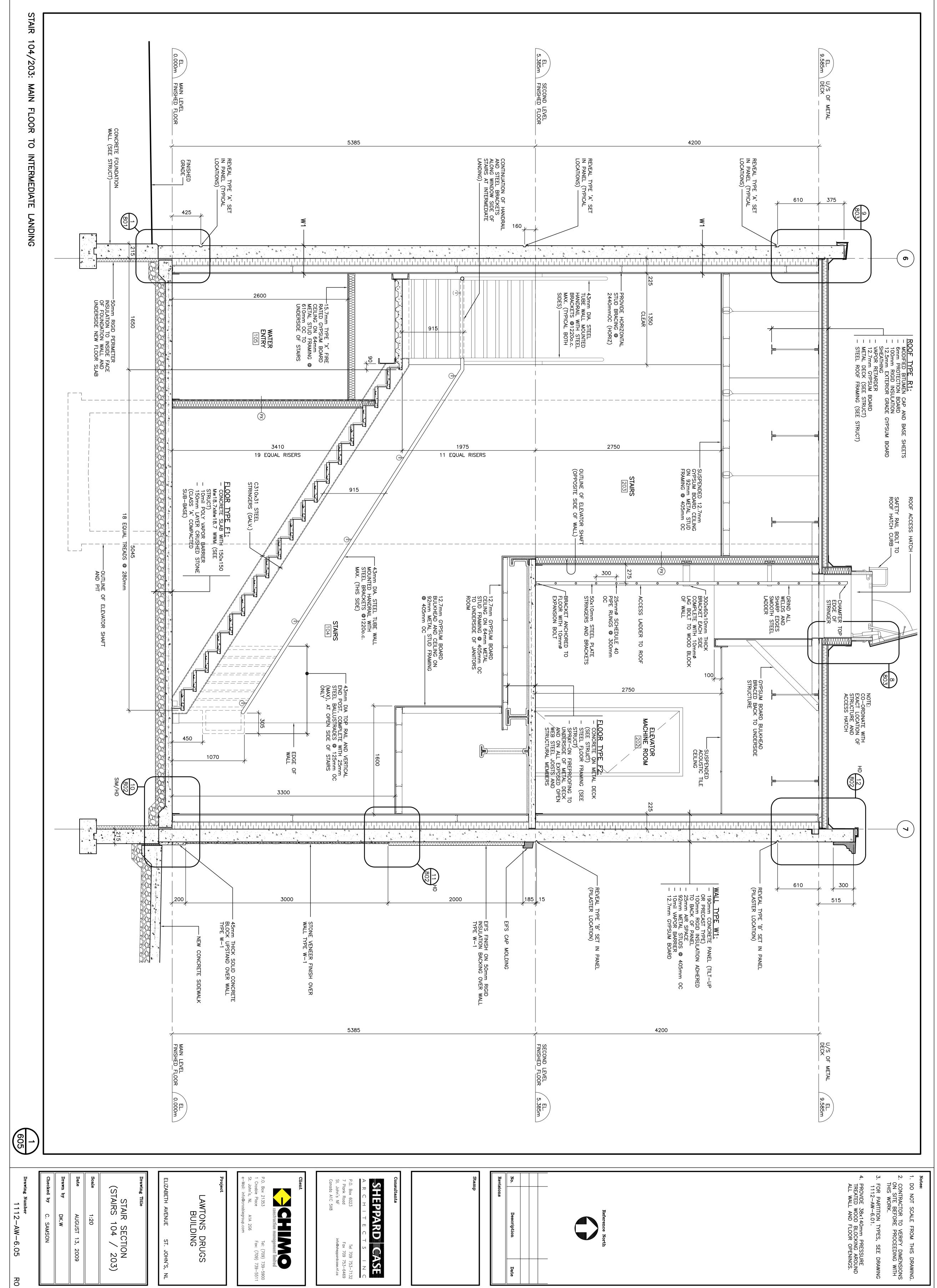












6023 oad NF IC 5X8	Τ	Its	

Desc		

Page | **B-1**

Appendix B STRUCTURAL DRAWINGS

DRAWINGS

Notes

- S-1.01 Steel Connections
- S-2.01 Steel Frame Gridlines 2,3,4
- S-3.01 Steel Frame Gridlines C,E,5,7
- S-4.01 Plan View of Floor Steel Members, Floor Slab Detail and Floor System Information
- S-5.01 Plan View of Roof Steel Members and Roof System Information
- S-6.01 Plan View of Slab Steel Members
- P-1.01 West and South Two Storey Tilt Up Concrete Wall Panel Details
- P-2.01 East and North Two Storey Tilt Up Concrete Wall Panel Details
- P-3.01 Adjoining One Storey Tilt Up Concrete Wall Panel Details and Panel Connections
- P-4.01 Concrete Wall Panel Lifting Inserts Locations

GENERAL NOTES

- ALL WORK AND MATERIALS SHALL CONFORM TO THE REQUIREMENTS SET OUT IN THE 1995 NATIONAL BUILDING CODE OF CANADA.
- \mathbf{N} THE CONTRACTOR SHALL EXAMINE ALL DRAWINGS, CHECK ALL DIMENSIONS AND REPORT ANY DISCREPANCIES.
- ω 150mm PREMOULDED WATERSTOPS SHALL BE PLACED IN ALL EXPANSION, CONTRACTION AND CONSTRUCTION JOINTS AS SHOWN.
- 4 ALL TRADES SHALL SUBMIT SHOP DRAWINGS STAMPED BY A PROFESSIONAL ENGINEER REGISTERED IN NEWFOUNDLAND , PRIOR TO COMMENCEMENT OF FABRICATION.
- _Ω CONTRACTOR TO CONFIRM EXISTING STRUCTURE RELATED DIMENSIONS IN THE FIELD BEFORE PROCEEDING WITH THE WORK.

FORMWORK NOTES

- DESIGN, CONSTRUCT AND REMOVE FORMWORK, FRAMING SUPPORTS AND BRACING TO CONFORM TO REQUIREMENTS SPECIFIED IN CSA-A23.1-94 AND CSA S269.1-1975 TO PROVIDE FINISHED POURED CONCRETE SURFACES WITHIN SPECIFIED TOLERANCES.
- Ν ALLOWABLE TOLERANCES TO REQUIREMENT S OF CSA-A23.1-94.
- ω CHAMFER ALL EXTERNAL CORNERS EXPOSED TO VIEW
- INSTALL ITEMS SUPPLIED BY OTHERS SUCH AS INSERTS, ANCHOR BOLTS AND MISCELLANEOUS FRAMES.

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

- <u>(</u>) DO NOT REMOVE FORMS OR SHORES, WITHOUT PRIOR APPROVAL OF THE ENGINEER.
- FORMS SHALL NOT BE REMOVED BEFORE THE CONCRETE HAS SET AND REACHED 70% OF ITS DESIGN STRENGTH.
- CONSTRUCTION JOINTS SHALL BE LOCATED SO AS TO LEAST IMPAIR THE STRENGTH OF THE STRUCTURE AND TO THE ENGINEERS APPROVAL. CONSTRUCTION JOINTS SHALL BE KEYED AND 15M DOWELS X 1050 LONG AT 600 cc SHALL BE ADDED. REINFORCING SHALL NOT BE INTERRUPTED.
- REMOVE ALL FINS FROM VISIBLE SURFACES. FILL ALL TIE HOLES WITH PLASTIC PLUGS, CAULKING OR GROUT.
- REINFORCING STEEL NOTES
- <u>-</u> ALL REINFORCING STEEL SHALL HAVE A MINIMUM YIEL STRENGTH OF 400 MPa AND SHALL CONFORM TO CSA G30.18-M92

5

 \mathbf{N} ALL REINFORCING STEEL SHALL BE DETAILED, FABRICATED, PLACED AND SUPPORTED IN ACCORDANCE WITH REINFORCING STEEL MANUAL OF STANDARD PRACTICE BY THE REINFORCING STEEL INSTITUTE OF

- ONTARIO, 1996 (THIRD EDITION), AND CSA-A23-94.
- ω ALL WWM SHALL CONFORM TO CSA G30.3-M1983 AND CSA G30.5-M1983. ALL WWM SHALL BE SUPPLIED IN FLAT SHEETS ONLY. INSTALL AS PER DETAILS ON THIS DRAWING.
- ALL REINFORCING STEEL SHALL BE LAPPED A MINIMUM OF 36 BAR DIAMETERS, UNLESS NOTED OTHERWISE.

4

- S SUPERVISION DURING THE PLACEMENT OF CONCRETE TO ENSURE THAT THE REINFORCING STEEL IS MAINTAINED IN ITS CORRECT POSITION. THE CONTRACTOR SHALL PROVIDE CONTINUOUS
- 6 ALL TEMPERATURE REINFORCING STEEL, I.E. HORIZONTAL WALL REINFORCING STEEL SHALL BE LAPPED WITH A CLASS 'B' TENSION SPLICE.

CONCRETE NOTES

- <u>-</u> BE READY MIX. ALL CONCRETE SHALL CONFORM TO CSA-A23.1-94. AND
- Ν DAYS SHALL BE AS FOLLOWS: TILT-UP PANELS MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 30 MPa 35 MPa
- ALL CONCRETE EXPOSED TO THE WEATHER AND SUBJECTED TO DE-ICING SALTS SHALL CONTAIN 6% + 1% ENTRAINED AIR AND SHALL HAVE A WATER TO CEMENT FLOOR SLAB

ω

- 4 ENGINEER. ALL CONCRETE ADDITIVES SHALL BE APPROVED BY THE RATIO OF .45
- S NO CONCRETE SHALL BE POURED WITHOUT PRIOR APPROVAL OF THE ENGINEER.
- <u>ი</u> ALL CONCRETE SHALL BE TESTED IN ACCORDANCE WITH CAN/CSA-A23.2-94.
- 7 FOR COMPRESSIVE STRENGTH TESTING OF CONCRETE A MINIMUM OF 3- 150 x 300 CYLINDERS ARE REQUIRED FOR:
- $\Box \cup \Box \supset$
- EACH DAY'S POUR EACH TYPE OF GRADE OF CONCRETE EACH CHANGE OF SUPPLIER EACH 40 CU m OR FRACTION THEREOF FOR WALLS AND SLABS.
- ш ADDITIONAL TEST SPECIMENS SHALL BE TAKEN WHENEVER REQUESTED BY THE ENGINEER OR THE SUPERVISOR TO VERIFY THE CONCRETE QUALITY.
- ALL MIX DESIGNS SHALL CONFORM TO CAN/CSA-A23.1-94

8

- 9 ALL CONCRETE CURING SHALL CONFORM TO CAN/CSA-A23.1-04.

- 10. CONCRETE PROTECTIVE COVER FOR REINFORCING STEEL SHALL BE AS FOLLOWS:

 A. EXPOSED TILT-UP PANEL WALLS
 40mm

 B. INTERNAL FLOOR SLAB
 20mm

STRUCTURAL STEEL NOTES

Notes

- <u>`</u> ALL STRUCTURAL STEEL SHALL BE NEW STOCK AND CONFORM TO THE FOLLOWING GRADES AND STANDARDS:
- ωÞ CAN/CSA-G40.21-92 TYPE 300W HOLLOW STRUCTURAL SECTIONS: CAN/CSA-G40.21-92 TYPE 350W, CLASS 'C'
- <u>.</u> STRUCTURAL W SHAPES: CAN/CSA-G40.21-02 TYPE 350W.
- \mathbb{N} ALL STRUCTURAL STEEL SHALL BE FABRICATED AND ERECTED IN ACCORDANCE WITH CAN/CSA-S16.1-94.
- ω ALL WELDING SHALL BE CARRIED OUT IN ACCORDANCE WITH CSA-W59 -M1989 BY A FABRICATOR FULLY APPROVED UNDER CSA-W47-1992. DIVISION NO. 1 AND NO. 2.

- 4 ALL BOLTS, NUTS, AND WASHERS SHALL CONFORM TO ASTM A325
- сл . ALL ANCHORS BOLTS, NUTS AND WASHERS SHALL CONFORM TO ASTM A36 OR ASTM A307.
- <u>ი</u> ALL STEEL SHEAR STUDS SHALL CONFORM TO ASTM A108-73 AND CSA W59-1989.
- 7 ALL STEEL DECK SHALL BE GRADE 'A' STRUCTURAL QUALITY TO ASTM A446-76 AND GALVANIZED TO ASTM A525-87.

N

- œ STEEL DECK MAY BE AN APPROVED DETAIL.
- 9 ELEVATIONS NOTED ON PLAN ARE TOP OF STEEL UNLESS OTHERWISE INDICATED. (UNDERSIDE OF DECK)

- 10. NON-SHRINK GROUT ALL BASE PLATES SHALL BE GROUTED SOLID WITH 25mm
- 11. NO HOLES SHALL BE CUT IN STRUCTURAL STEEL WITHOUT THE PRIOR APPROVAL OF THE STRUCTURAL ENGINEER.

ω

12. TRADE CONTRACTOR TO ALLOW FOR EMBEDDED CONNECTION PLATE AT END OF ALL BEAMS AND ANGLES FRAMING INTO CONCRETE WALLS UNLESS OTHERWISE INDICATED.

4

- 13. INSPECTION AND TESTING OF STRUCTURAL STEEL FRAMEWORK (SUCH AS, BUT NOT LIMITED TO, BOLT TORQUE, WELD QUANTITY, ALIGNMENT) SHALL BE IN ACCORDANCE WITH CAN/CSA-S16. 1-94 AND CSA W59-M1989 BY A QUALIFIED INSPECTION COMPANY
- 16. SPLICES IN STEEL MEMBERS OTHER THAN THOSE SHOWN ON THE DRAWINGS SHALL NOT BE PERMITTED.
- 17. ALL WELDED JOINTS IN ARCHITECTURALLY EXPOSED STRUCTURAL STEEL SHALL BE GROUND SMOOTH AND SHALL HAVE ALL WELD SPLATTER REMOVED.
- 18. CLEAN, PREPARE SURFACES AND SHOP PRIME STRUCTURAL STEEL IN ACCORDANCE WITH CAN/CSA-S16.1-M94.
- 19. TOUCH UP SHOP PRIMER TO BOLTS, WELDS, AND BURNED AND SCRATCHED SURFACES AT COMPLETION OF ERECTION.

9

œ

7

<u></u>

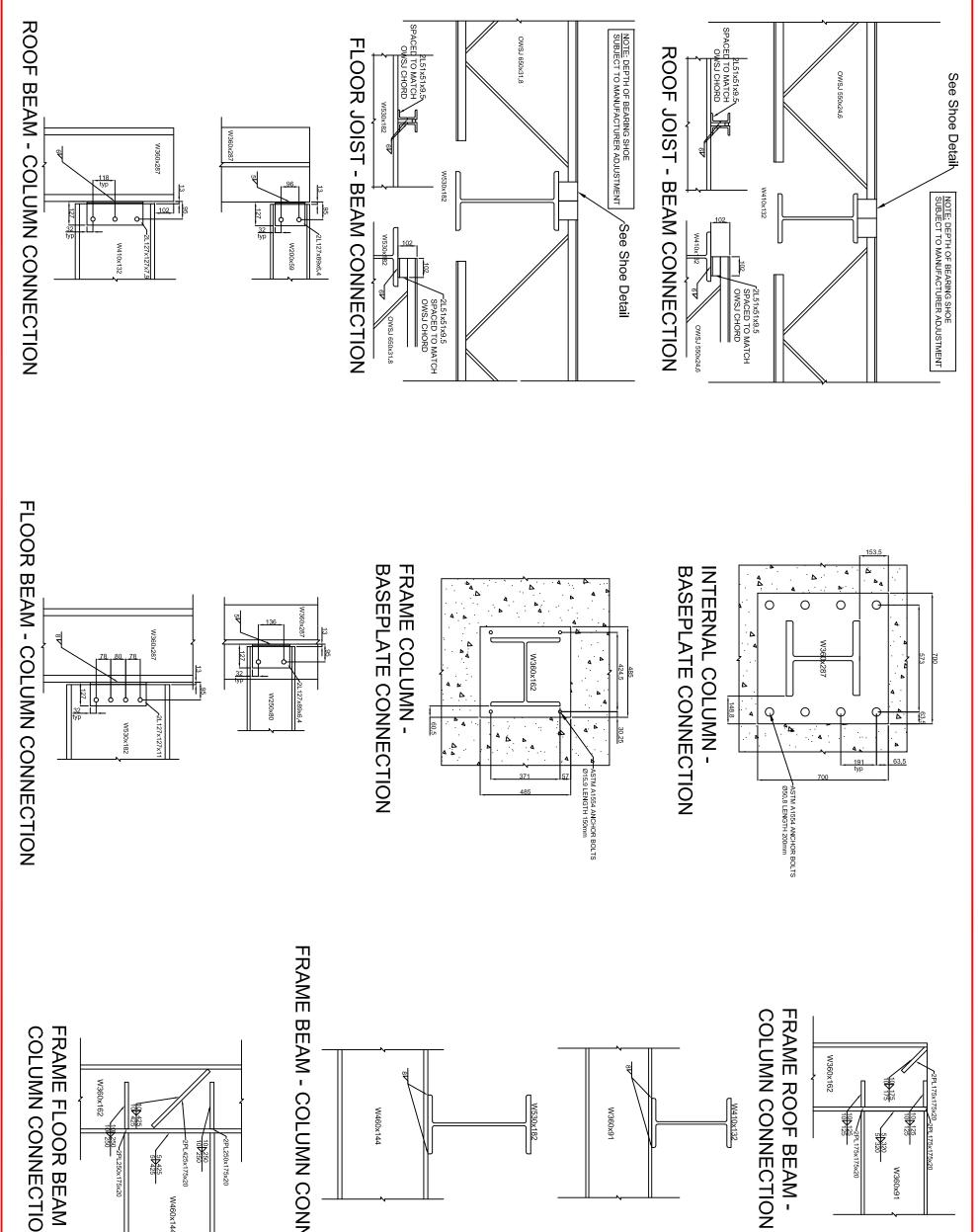
S

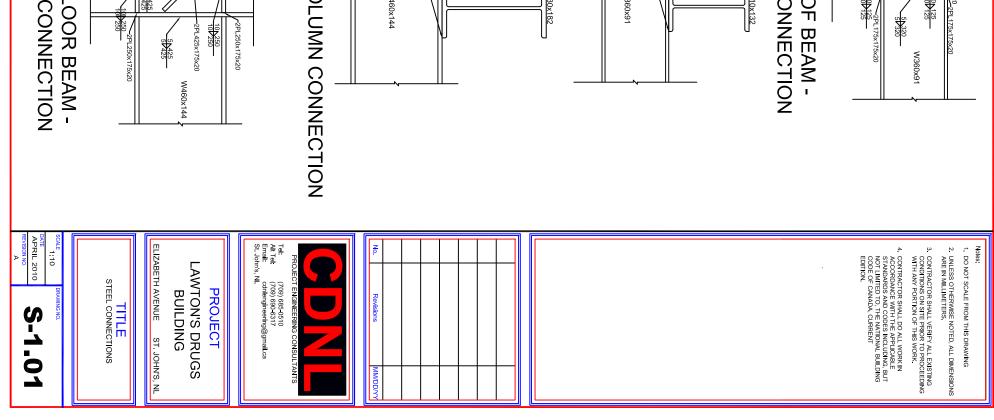
- 20.SHOP PAINT TO CISC/CPMA 2-75. TOUCH UP SCRATCHES, BOLTS AND WELDS AFTER ALL STEEL IS ERECTED.
- 21. ALL BOLTS IN STEEL CONNECTIONS TO BE PRETENSIONED.

EDUCATIONAL PRODUCT

AUTODESK

AN

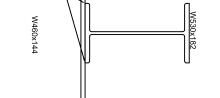

ВЧ

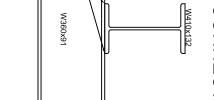

PRODUCED

- 22. OPEN WEB STEEL JOIST DESIGN TO BE IN ACCORDANCE WITH

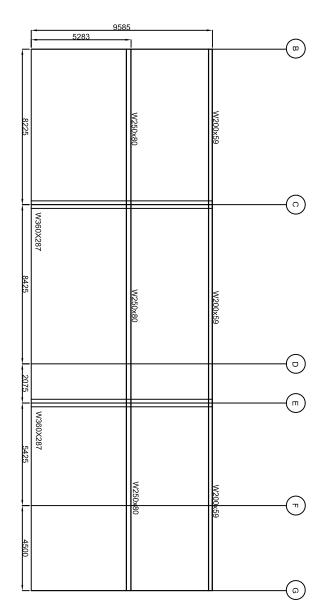
۸	
SCALE 1:10 AMPEL 2010 APPRIL 2010 S-1_01 S-1_01	
TITLE STEEL CONNECTIONS	
BUILDING ELIZABETH AVENUE ST. JOHN'S, NL	10. HORIZONTAL REINFORCEMENT FOR TWO STOREY PANELS WILL BE 38 10M BARS @ 265 cc AND FOR ONE STOREY PANELS WILL BE 22 10M BARS @ 265 cc
LAWTON'S DRUGS	9. TOP AND BOTTOM PLATES AND SEATS IDENTICAL.
PROJECT	8. ALL ROOF CONNECTIONS ALIGNED WITH FLOOR CONNECTIONS UNLESS OTHERWISE NOTED.
rer. (ros) occ-sorto Alt Tel: (ros) 680-6317 Email: cdnlengineering@gmail.ca St. John's, NL	7. UNLESS OTHERWISE NOTED DIAGONALLY PLACED BARS AT CORNERS OF OPENINGS ARE 10M 1200mm @ 45 deg.
Ĩ.	6. THE CONTRACTOR SHALL EXAMINE ALL DRAWINGS, CHECK ALL DIMENSIONS, PANEL COMPATIBILITY AND REPORT ANY DISCREPANCIES BEFORE PROCEEDING WITH WORK.
	5. PANEL INSERTS INDICATED ON STRUCTURAL DRAWINGS TO BE SUPPLIED BY MANUFACTURER.
No. Revisions MM/DD/YY	4. LIFTING INSERTS, ERECTING STRESSES AND METHODS, AND BRACING FOR CONSTRUCTION AND LATERAL EFFECTS SHALL BE IN ACCORDANCE WITH THE SUPPLIER'S AND CONTRACTOR'S DESIGN AND DRAWINGS.
	3. TEMPORARY BRACING OR TEMPORARY BACKFILL SHALL BE PROVIDED FOR TILT-UP WALL PANELS ACTING AS RETAINING WALLS, BEFORE FINAL BACKFILLING IS CARRIED OUT. PANELS WITH FILL ON BOTH SIDES TO BE BACKFILLED SIMULTANEOUSLY.
	NOTE: ITEMS A AND B APPLIES ONLY WHERE ONE LAYER OF REINFORCING STEEL IS REQUIRED IN THE PANELS, IF TWO LAYERS ARE REQUIRED REFER TO ITEMS C AND D.
	A. TILT-UP PANEL (VERT. STEEL) EACH FACE B. TILT-UP PANEL (HORZ. STEEL) TIE TO VERT. STEEL C. WALLS PROTECTED 20mm D. WALLS EXPOSED 40mm
	2. CONCRETE PROTECTIVE COVER FOR REINFORCING STEEL SHALL BE AS FOLLOWS:
	1. FOR CONCRETE TILT-UP PANELS USE 20mm MAXIMUM AGGREGATE SIZE, 6% AIR ENTRAINMENT, 75mm MAXIMUM SLUMP, PANEL CONCRETE STRENGTH AT TIME OF LIFTING SHALL BE 20 MPa.
	TILT-UP PANELS
	28.STEEL DECK FASTENING REQUIREMENTS NOTED ON DRAWINGS.
	27.LIVE LOAD DEFLECTIONS OF STEEL JOISTS AND STEEL DECK SHALL NOT EXCEED L/360.
	26. THE CENTER OF ALL OPEN WEB STEEL JOISTS BEARING IS TO COINCIDE WITH THE CENTER LINE OF THE SUPPORTING ELEMENTS UNLESS OTHERWISE INDICATED.
	25. ALL STEEL SHOES TO BE 102mm DEEP OR GREATER.
CODE OF CANADA, CURRENT EDITION,	24. SLOPE STEEL TO ROOF DRAINS TYPICAL UNLESS NOTED OTHERWISE.
WITH ANT FORTION OF THIS WORK. 4. CONTRACTOR SHALL DO ALL WORK IN ACCORDANCE WITH THE APPLICABLE STANDARDS AND CODES INCLUDING, BUT	23.PROVIDE CAMBER FOR DEAD LOAD DEFLECTION OF STEEL JOISTS IN ACCORDANCE WITH CAN/CSA-S16.1-M94.
3. CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS ON SITE PRIOR TO PROCEEDING WITH ANY PORTION OF THIS WORK	CAN/CSA-S16.1-M94.
1. DO NOT SCALE FROM THIS DRAWING 2. UNLESS OTHERWISE NOTED, ALL DIMENSIONS	

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

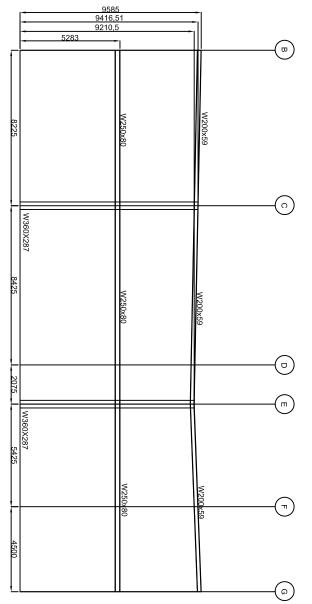


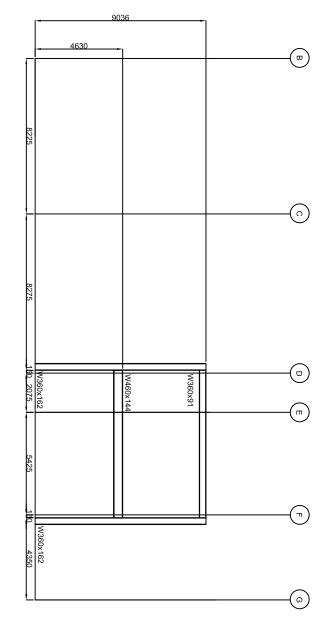


FRAME FLOOR BEAM -COLUMN CONNECTION

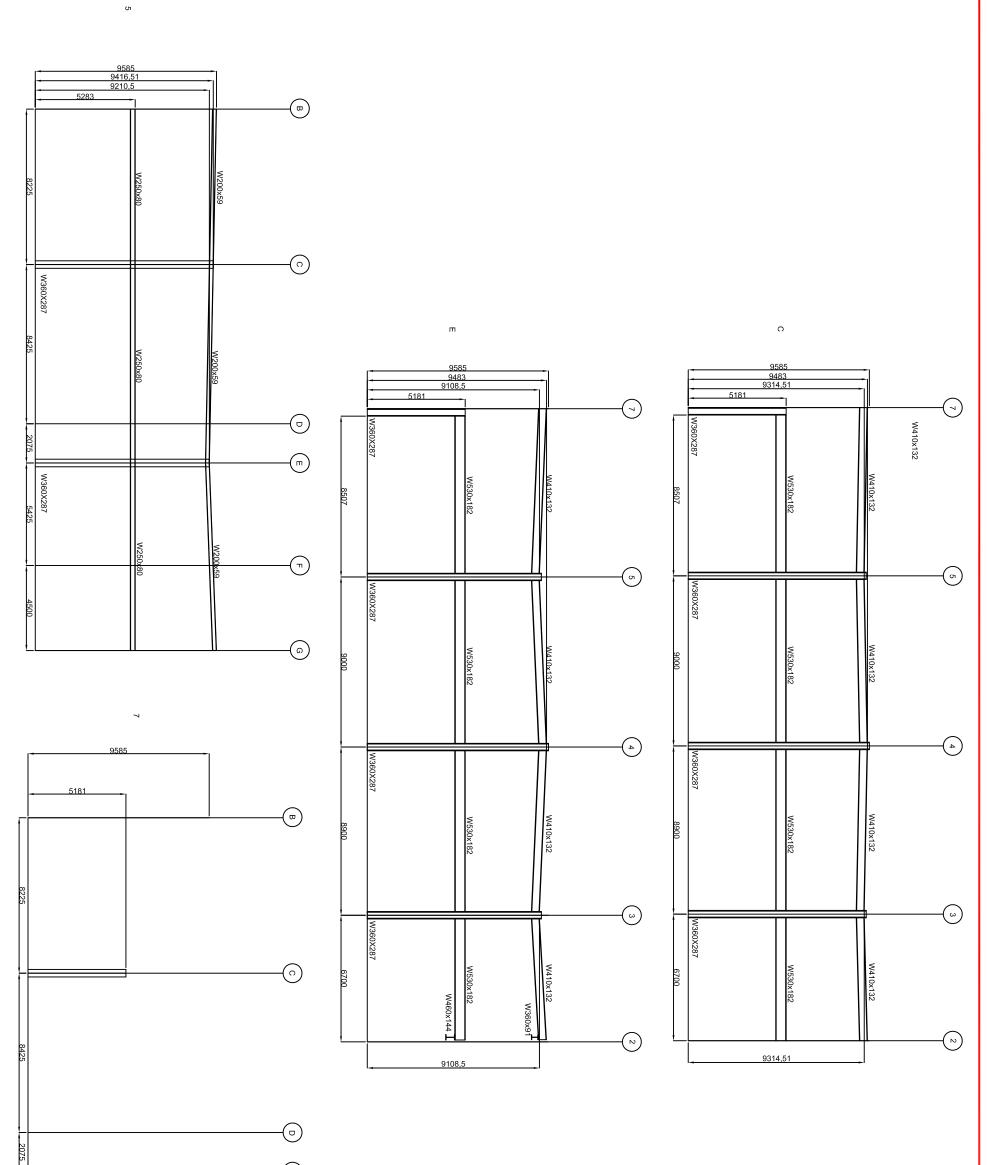

	255	//	
<u>l</u>	C		
0250 0250 0250	50425 50425	101250 101250 	~2PL250x175x20

FRAME BEAM - COLUMN CONNECTION

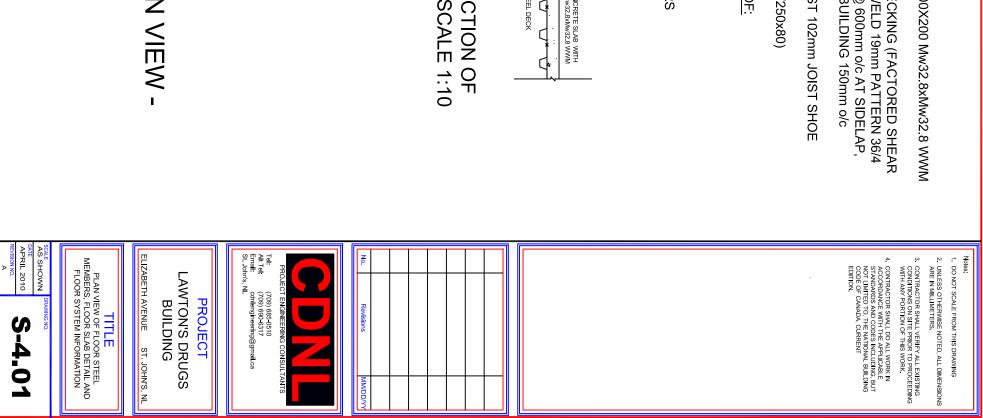



125

4



ω


N

Project Revision Motion No. Revision Motion PROLECT Revision Revision PROLECT Cross possion Revision Tata: (70) 865-6510 Revision Tata: (70) 865-6510 Revision Tata: (70) 865-6510 Revision Tata: (70) 865-6510 Revision St. John's, N. Revision Revision PROLECT LAWTON'S DRUGS BUILDING ELIZABETH AVENUE ST. JOHN'S, N. Revision TITLE T1:00 Not Revision St. John's N. OPERLIZ-001 Revision St. 20.01 St. 20.01	ULE REMARKS Nor ROOF SPAN B-C 1.0 NOT SUE FRAN B-C 1.0 NOT SUE FRAN B-C EXTENDED FOOR SPAN C-E 1.0 NOT SUE FRAN B-C 1.0 NOT SUE FRAN B-C FLOOR SPAN C-E FLOOR SPAN C-E 1.0 NOT SUE FRAN B-C 1.0 NOT SUE FRAN B-C FLOOR SPAN C-E FLOOR SPAN C-E 0.0 NOT SUE FRAN B-C 0.0 NOT SUE FRAN C-E NOT SUE FRA
	STEEL SCHEDULE 19 R 19 19 FLOOI 19 19 FLOOI 2 ROOF FLOOI 2 ROOF ROOF 3 FLOOI R 3 FLOOI R 2 ROOF R 3 FLOOI R 2 ROOF R 3 FLOOI R 3 FLOOI R 2 ROOF R 3 FLOOI R 2 ROOF R 3 FLOOI R 1 R R 2 R R 2 R R 3 FLOOI R 3 FLOOI R
	LENGTH 8328 10500 10028 14197 8328 10028 10028 10028 10028 10028 10028 10028 8507 8605 6665 6850 8605 8605 8605 8605 8605
	$\begin{array}{c} {\rm SECTION}\\ {\rm OWSJ} 550 \times 24.6\\ {\rm OWSJ} 550 \times 24.6\\ {\rm OWSJ} 550 \times 24.6\\ {\rm OWSJ} 650 \times 31.8\\ {\rm W410} \times 132\\ {\rm W410} \times 132\\ {\rm W410} \times 132\\ {\rm W450} \times 35\\ {\rm W250} \times 80\\ {\rm W250} \times 80\\ {\rm W250} \times 80\\ {\rm W250} \times 59\\ {\rm W260} \times 287\\ {\rm W360} \times 2$

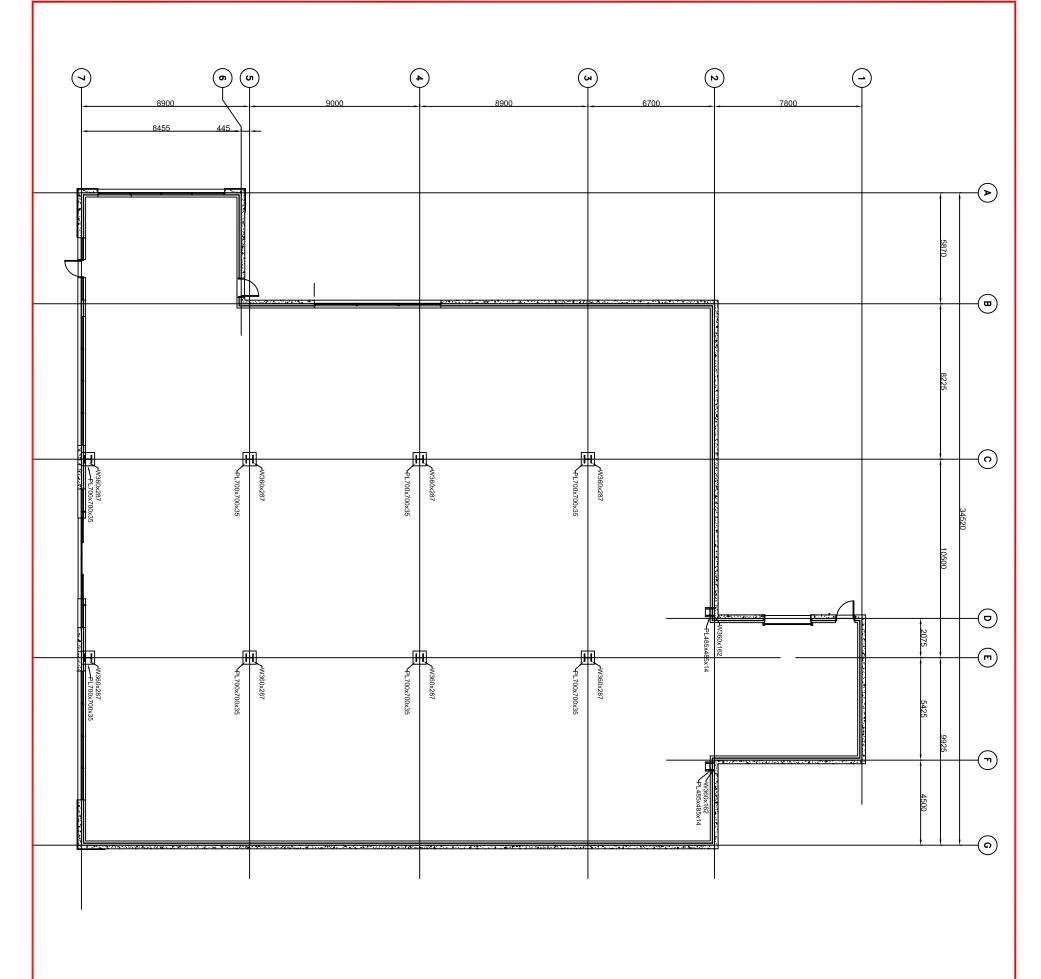
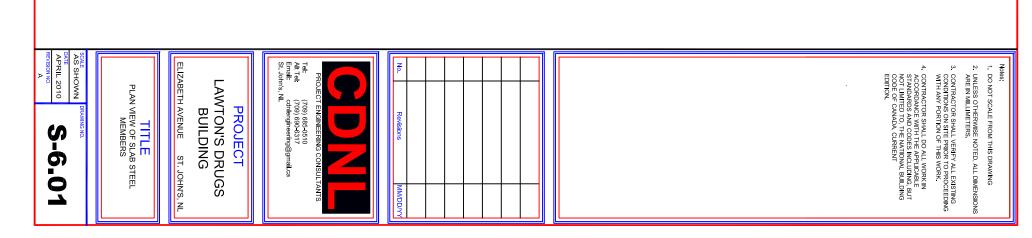
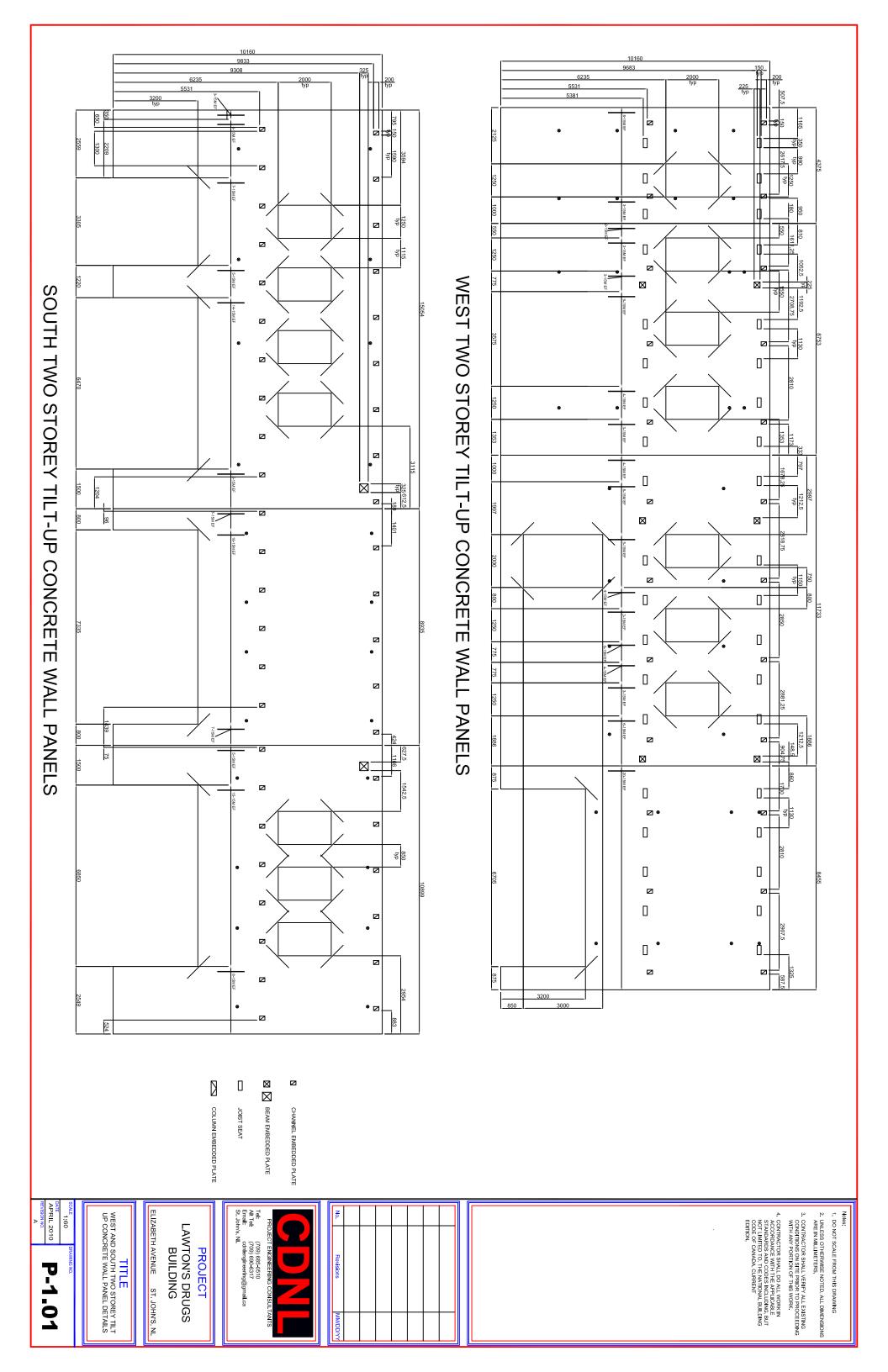
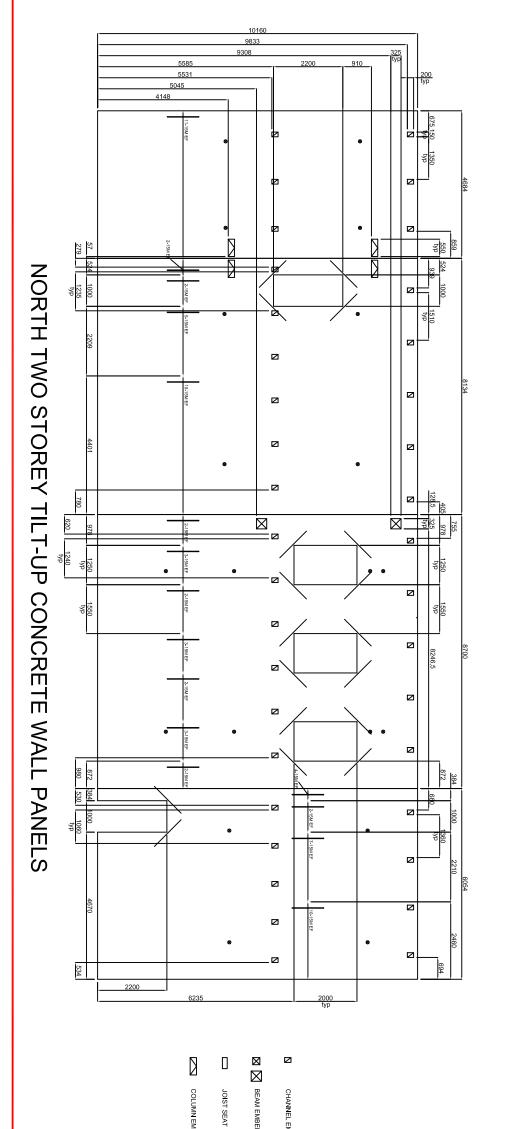

5425	(m)	
4500	Ţ	
PROJECT LAWTON'S DF BUILDING ELIZABETH AVENUE ST TITLE STEEL FRAME GRIDLINES O SCALE 1:100 MPRIL 2010 APFRIL 2010	O	Notes: 1. DO NOT SCALE FROM THIS DRAWING 2. UNLESS OTHERWISE NOTED, ALL DIV ARE IN MILLINETERS. 3. CONTRACTOR SHALL VERIFY ALL EXI CONDITIONS ON STEP FROR TO PRO WITH AIX PORTION OF RIVEN ALL WORK! ACCORDANCE WITH THE APPLICABLE STANDARDS AND CODES INCLUDING
PROJECT AWTON'S DRUGS BUILDING ETH AVENUE ST. JOHN'S, NL TITLE FRAME GRIDLINES C, E, 5 AND 7 S-3,01	t. Interviews and the set of the	Noies: 1. DO NOT SCALE FROM THIS DRAWING 2. UNLESS OTHERWISE NOTED, ALL DIMENSIONS ARE IN MILLIMETERS. 3. CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS ON SITE FRIOR TO PROCEEDING WITH ANY PORTION OF THE WORK. 4. CONTRACTOR SHALL DO ALL WORK IN ACCORDANCE WITH THE APPLICABLE STANDARDS AND CODES INCLUDING. BUT

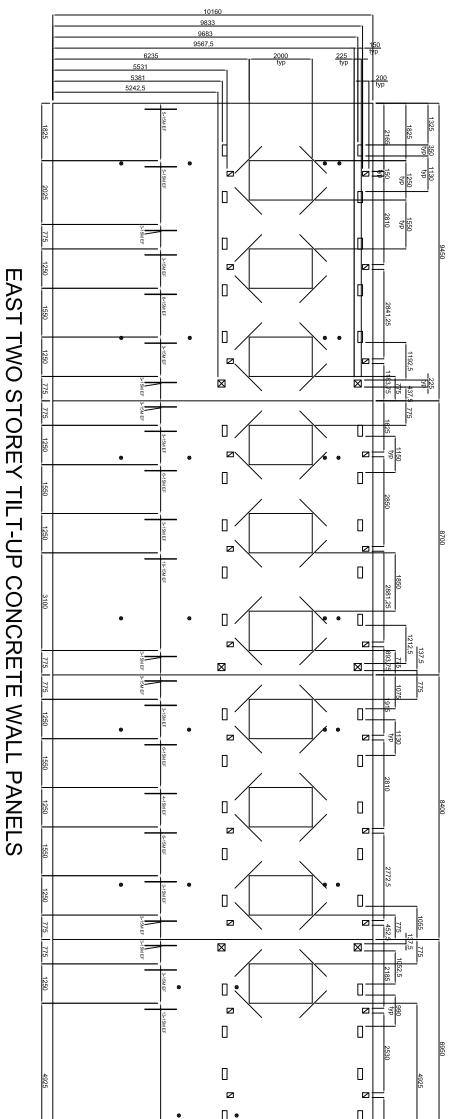
Image: 2000 Image: 2000 <t< th=""><th>v) (</th><th>4 </th><th>3</th><th>6700</th><th>- 7800</th><th>•)</th></t<>	v) (4 	3	6700	- 7800	•)
						5870
• • • • • • • • • • • • • • • • • • •	00000000000000000000000000000000000000	• • • • • • • • • • • • • • • • • • •		• 1340mm o.c • 1340mm o.c • 31.8		8225
0WSJ 650 x 31.8 9 1480mm o.c	W250x80		W250x80	OWSJ 650 × 31.8 0 1340mm o.c	<u> </u>	34520 10500
© OWSU 	₩ 281×0£GM © 00 1500mm x 0.c 80 00 0.c 80 0.c	W220×185 W220×185 W255 W200 W20 W20 W20 W20 W20 W20 W20 W20 W2	W250x80			F 5425 64500
FLOOR SYSTEM PLAN		ELEVATION SECT	Samm x .91mm STEEL DECK	DEAD LOAD - 2.74 kPa LIVE LOAD - 7.20 kPa LIVE LOAD DEFLECTION - L/360 BUILDING IMPORTANCE FACTORS Iw = 1.0 Ie = 1.0	650 DEEP O.W.S.J. WITH AT LEAST 10 STEEL BEAMS (W530x182 AND W250x DESIGN LOADS FOR UPPER ROOF:	<u>FLOOR SYSTEM:</u> 64mm CONCRETE SLAB WITH 200X20 38mm x 0.91mm P-3615 STEEL DECKIN 23.7 kN/m - 3 SPANS) PUDDLE WELD AT SUPPORT, BUTTON PUNCH @ 600 WELD DECK AT PERIMETER OF BUILI



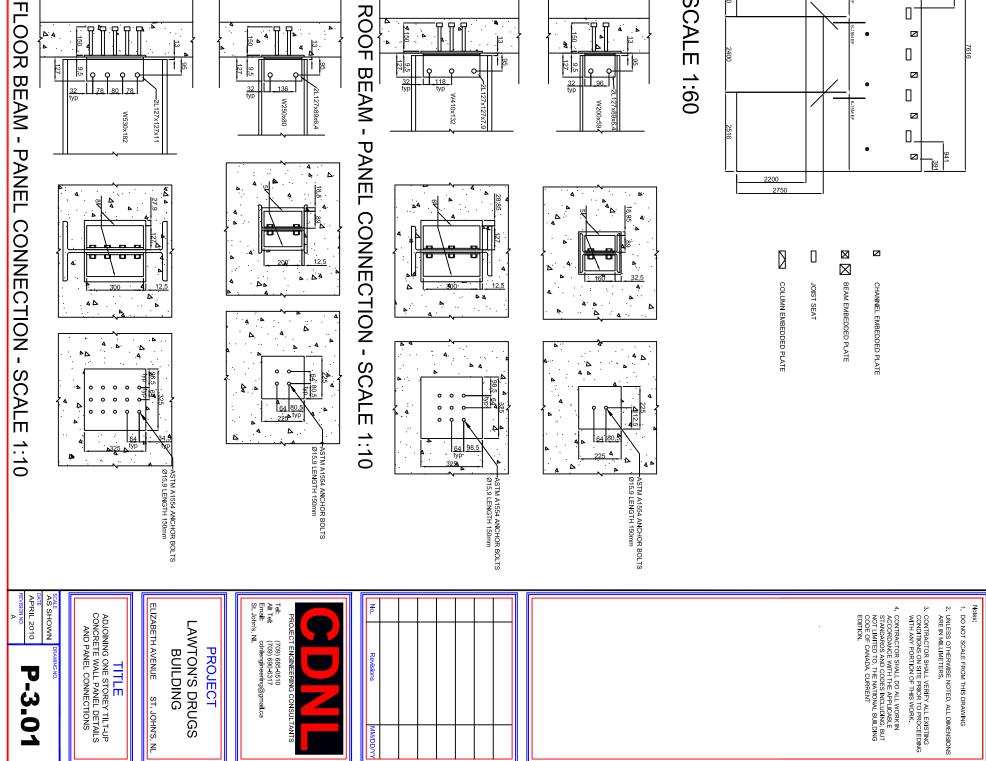
	9000 90000 9000 9000 9000 9000 9000 9000 9000 9000		OWSJ 550 × 24.6 OWSJ 550 × 24.6		6700 00%SJ 550 × 24.6 00%SJ 550 × 24.6 72€ L×0 L≯M 00%SJ 550 × 24.6 00%SJ 550		1 1 2075 5425 4500 23.7 AT S WEL 550 [
ROOF SYSTEM PLAN V SCALE 1:100		DEAD LOAD - 1.24 kPa SNOW LOAD - 9.04 kPa WIND UPDRAFT - 2.10 kPa WIND LOAD - 2.18 kPa LIVE LOAD DEFLECTION - L/360		38mm x 0.91mm P-3615 STEEL DEC 23.7 kN/m - 3 SPANS) PUDDLE WE AT SUPPORT, BUTTON PUNCH @ WELD DECK AT PERIMETER OF BU		STEEL BEAMS (W410X132 AND W2 DESIGN LOADS FOR UPPER ROOF DEAD LOAD - 1.23 kPa SNOW LOAD - 1.23 kPa WIND UPDRAFT - 2.30 kPa WIND UPDRAFT - 2.30 kPa WIND LOAD - 1.02 kPa LIVE LOAD DEFLECTION - L/360 BUILDING IMPORTANCE FACTORS	38mm x 0.91mm P-3615 STEEL DEC 23.7 kN/m - 3 SPANS) PUDDLE WE AT SUPPORT, BUTTON PUNCH @ WELD DECK AT PERIMETER OF BU 550 DEEP O.W.S.J. WITH AT LEAST

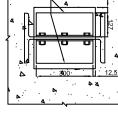

>	
AS SHOWN AS SHOWN ADREL 2010 APREL 2010 REVISION NO.	
TITLE PLAN VIEW OF ROOF STEEL MEMBERS AND ROOF SYSTEM INFORMATION	
PROJECT LAWTON'S DRUGS BUILDING ELIZABETH AVENUE ST. JOHN'S, NL	VIEW -
PROJECT ENGINEERING CONSULTANTS Tel: (709) 686-6310 All Tel: (709) 686-6310 All Tel: (709) 680-6311 Email: cohlengineering@gmail.ca St. John's, NL	
No. Revisions MM/DD/YY	ΰ
	ST 102mm JOIST SHOE <u>DF:</u>
	ECKING (FACTORED SHEAR VELD 19mm PATTERN 36/7 9 150mm o/c AT SIDELAP, BUILDING 150mm o/c
	õ
	v200X59) <u>DF:</u>
 Noiss: DO NOT SCALE FROM THIS DRAWING UNLESS OTHERWISE NOTED, ALL DIMENSIONS ARE IN MILLIMETERS. CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS ON SITE PROR TO PROCEEDING WITH ARY PORTION OF THIS WORK. CONTRACTOR SHALL DO ALL WORK IN ACCORDANCE WITH THE APPLICABLE STRADARDS AND CODES INCLUDING. BUT NOT LIMITED TO, THE INATIONAL BUILDING CODE OF CANADA, CURRENT 	ECKING (FACTORED SHEAR VELD 19mm PATTERN 36/7 9 150mm o/c AT SIDELAP, BUILDING 150mm o/c ST 102mm JOIST SHOE

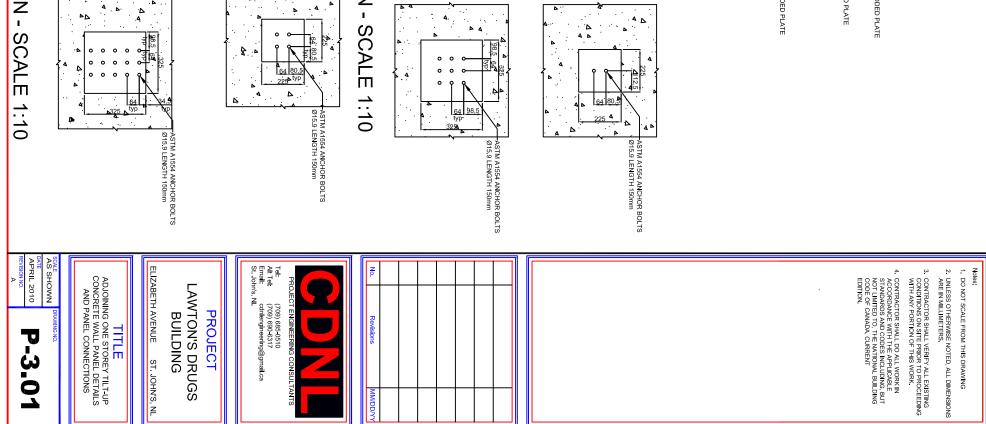


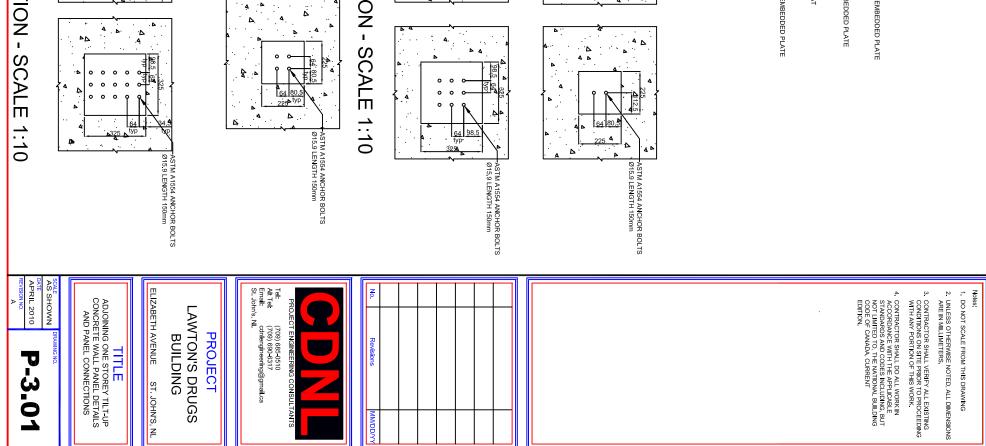

SLAB SYSTEM I SCALE 1:100

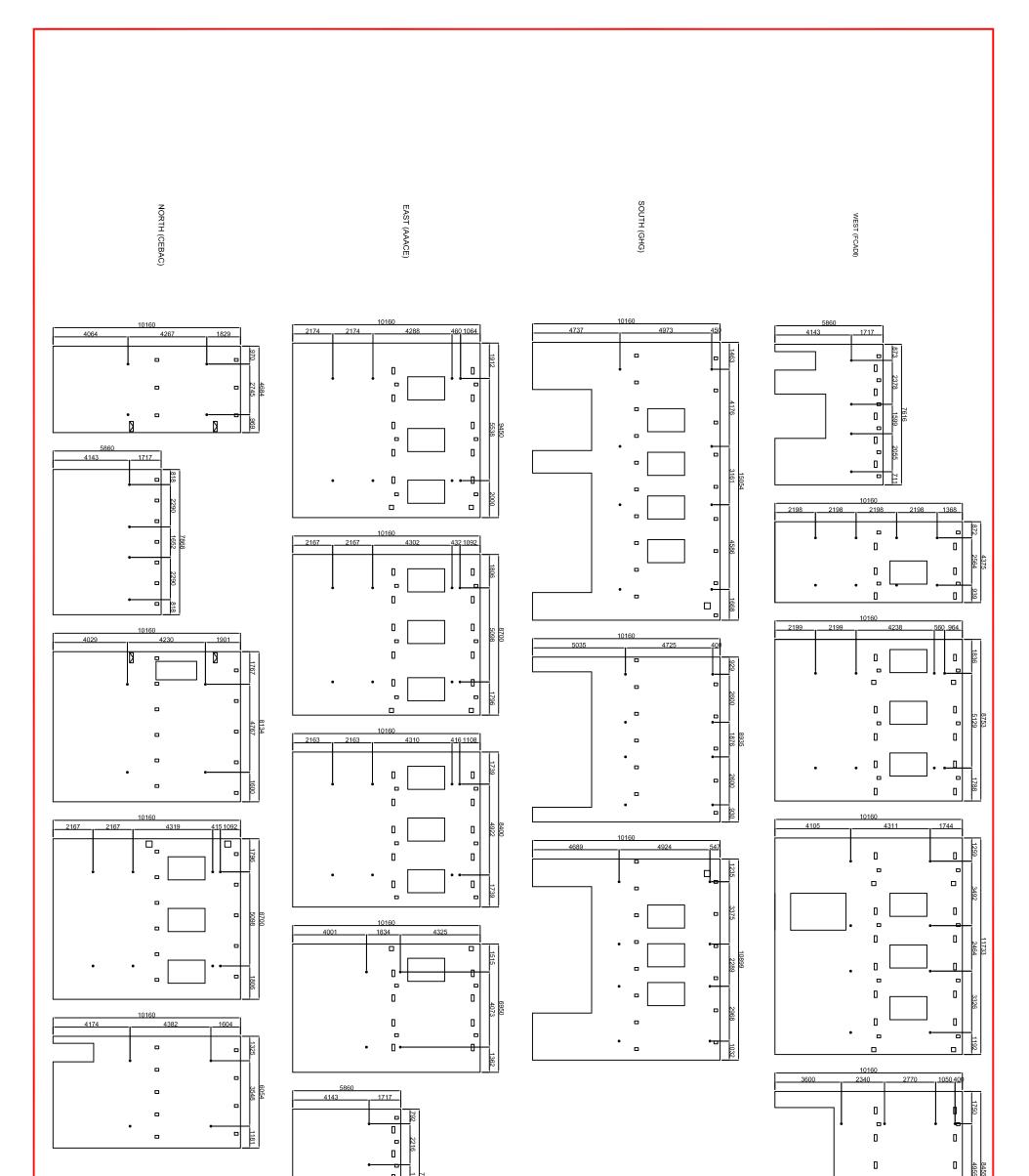
PLAN VIEW -

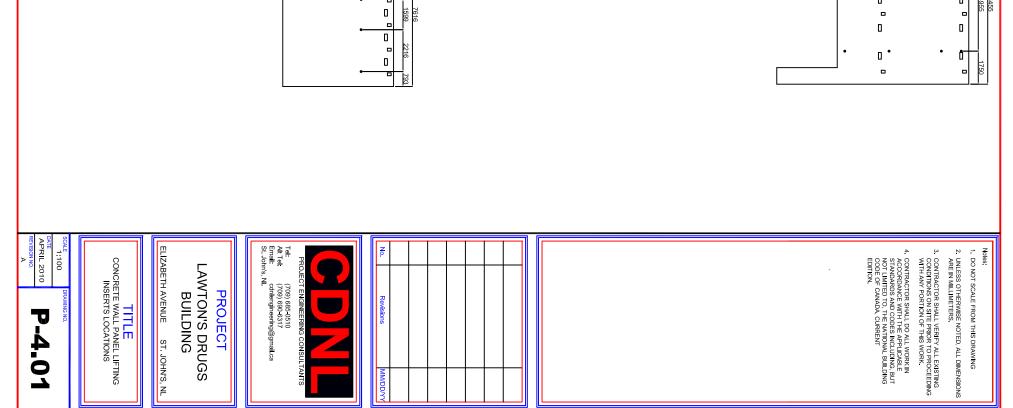







		T MBEDDED PLATE	EMBEDDED PLATE IEDDED PLATE		• []•	
SCALE 1:60 DATE APRIL 2010 REVISION NO. A	TITLE EAST AND NORTH TWO STOREY TILT UP CONCRETE WALL PANEL DETAILS	PROJECT LAWTON'S DRUGS BUILDING ELIZABETH AVENUE ST. JOHN'S, NL	PROJECT ENGINEERING CONSULTANTS Tel: (709) 680-6317 Email: contengineering@gmail.ca St. John's, NL	No. Revisions MM/DD/YY		Notes: 1. DO NOT SCALE FROM THIS DRAWING 2. UNLESS OTHERWISE NOTED, ALL DIMENSIONS ARE IN MILLIMETERS. 3. CONTRACTOR SHALL VERIFY ALL EXISTING CONTRACTOR SHALL OF THIS WORK. 4. CONTRACTOR SHALL DO ALL WORK IN ACCORDANCE WITH THE APPLICABLE STANDARDS AND CODES INCLUDING, BUT NOT LIMITED TO. THE MATIONAL BUILDING CODE OF CANADA, CURRENT EDITION.





Page |C-1

Appendix C LOAD CALCULATIONS

Sheet1

SNOW LOADS (Clause 4.1.6 and Commentary G)											
Upper				Upper Roof							
Roof	Value	Units	Notes	Drift	Value	Units	Notes				
ls	1.00		Importance Normal	h	1.80	m	Height Diffe	erence, over	estimate		
Ss	2.90		1/50 Snow Load	h'	1.03	m	Drift Height				
Sr	0.70	kPa	1/50 Wind Load	xd	3.60	m	Drift Depth				
w	33.50		Width	b	13.00		Drift Width				
l	34.50		Length	3Ss/gamma	2.90		Check				
lc	34.47		Char. Length								
Cw	1.00		Wind Factor		x (m)	Cw	Cs	Ca	S (kPa)		
Cb	0.80		Snow Factor		0.00	1.00	1.00	1.56	4.32		
Cs	1.00		Slope Factor		1.80	1.00	1.00	1.28	3.67		
Ca	1.00		Shape Factor		3.60	1.00	1.00	1.00	3.02		
gamma		kN/m^3	Snow Density		10.30	1.00	1.00	1.00	3.02		
S		kPa	Spec. Snow Load								
db	0.77	m	Snow Depth								
Lower				Lower Roof							
Roof	Value	Units	Notes	Drift	Value	Units	Notes				
ls	1.00		Importance Normal	h	4.58		Height Diffe				
Ss	2.90	kPa	1/50 Snow Load	h'	3.80 m		Drift Height				
Sr							•				
		kPa	1/50 Wind Load	xd1	19.01	m	Drift Depth,	least goveri	าร		
W	0.70 7.50	kPa				m	Drift Depth, >=2 m, OK	least goveri			
w I		kPa m	1/50 Wind Load	xd1	19.01	m	Drift Depth, >=2 m, OK				
l Ic	7.50	kPa m m	1/50 Wind Load Width	xd1 F	19.01 2.88	m m	Drift Depth, >=2 m, OK	least govern least govern			
l	7.50 7.80	kPa m m m	1/50 Wind Load Width Length	xd1 F xd2	19.01 2.88 10.03	m m m	Drift Depth, >=2 m, OK Drift Depth,	least govern least govern			
l Ic	7.50 7.80 7.79	kPa m m m	1/50 Wind Load Width Length Char. Length	xd1 F xd2 a	19.01 2.88 10.03 0.00	m m m m	Drift Depth, >=2 m, OK Drift Depth, <5 m, gap C <h, check<="" td=""><td>least govern least govern</td><td>าร</td></h,>	least govern least govern	าร		
l Ic Cw	7.50 7.80 7.79 1.00	kPa m m m	1/50 Wind Load Width Length Char. Length Wind Factor	xd1 F xd2 a 0.8Ss/gamma	19.01 2.88 10.03 0.00 0.77	m m m m	Drift Depth, >=2 m, OK Drift Depth, <5 m, gap (<h, check<br="">Shape Fact</h,>	least govern least govern DK	erns		
l Ic Cw Cb	7.50 7.80 7.79 1.00 0.80	kPa m m	1/50 Wind Load Width Length Char. Length Wind Factor Snow Factor	xd1 F xd2 a 0.8Ss/gamma Ca1	19.01 2.88 10.03 0.00 0.77 5.92	m m m m	Drift Depth, >=2 m, OK Drift Depth, <5 m, gap (<h, check<br="">Shape Fact</h,>	least govern least govern DK or, least gov	erns		
l Cw Cb Cs	7.50 7.80 7.79 1.00 0.80 1.00 1.00	kPa m m	1/50 Wind Load Width Length Char. Length Wind Factor Snow Factor Slope Factor	xd1 F xd2 a 0.8Ss/gamma Ca1	19.01 2.88 10.03 0.00 0.77 5.92	m m m m	Drift Depth, >=2 m, OK Drift Depth, <5 m, gap (<h, check<br="">Shape Fact</h,>	least govern least govern DK or, least gov	erns		
l Ic Cw Cb Cs Ca	7.50 7.80 7.79 1.00 0.80 1.00 1.00	kPa m m kN/m^3	1/50 Wind Load Width Length Char. Length Wind Factor Snow Factor Slope Factor Shape Factor	xd1 F xd2 a 0.8Ss/gamma Ca1	19.01 2.88 10.03 0.00 0.77 5.92 3.59	m m m	Drift Depth, >=2 m, OK Drift Depth, <5 m, gap C <h, check<br="">Shape Fact Shape Fact</h,>	least govern least govern DK or, least gov or, least gov	ns erns erns		
l Ic Cw Cb Cs Ca gamma	7.50 7.80 7.79 1.00 0.80 1.00 1.00 3.00	kPa m m kN/m^3 kPa	1/50 Wind Load Width Length Char. Length Wind Factor Snow Factor Slope Factor Shape Factor Snow Density	xd1 F xd2 a 0.8Ss/gamma Ca1	19.01 2.88 10.03 0.00 0.77 5.92 3.59 x (m)	m m m Cw	Drift Depth, >=2 m, OK Drift Depth, <5 m, gap C <h, check<br="">Shape Fact Shape Fact Shape Fact</h,>	least govern least govern DK or, least gov or, least gov Ca	erns erns S (kPa)		
l Ic Cw Cb Cs Ca gamma S	7.50 7.80 7.79 1.00 0.80 1.00 1.00 3.00 3.02	kPa m m kN/m^3 kPa m	1/50 Wind Load Width Length Char. Length Wind Factor Snow Factor Slope Factor Shape Factor Snow Density Spec. Snow Load	xd1 F xd2 a 0.8Ss/gamma Ca1	19.01 2.88 10.03 0.00 0.77 5.92 3.59 x (m) 0.00	m m m 2000 000 1.00	Drift Depth, >=2 m, OK Drift Depth, <5 m, gap C <h, check<br="">Shape Fact Shape Fact Shape Fact</h,>	least govern least govern DK or, least gov or, least gov <u>Ca</u> 3.59	erns erns S (kPa) 9.04		

Sheet1

WIND LOADS (Clause 4.1.7 and Commentary I)

	Value	Units	Notes
h	9.96	m	<=20 m, Low Rise
z1	3.45	m	Edge Width, least governs
z2	3.98	m	Edge Width, least governs
zcheck	1.38	m	Check, z >zcheck
Ce	1.00		Exposure Factor, >0.9

І-9 СрСд	I-9 CpCg Coefficient (s/c = edge, r = interior)										
Span	w (m)	I (m)	A (m^2)	s/c -ve	s/c +ve	r -ve	r +ve				
2B	1.34	8.23	11.02	-2.00	0.35	-1.50	0.35				
3B	1.48	8.23	12.17	-2.00	0.35	-1.50	0.35				
4B	1.50	8.23	12.34	-2.00	0.35	-1.50	0.35				
5B	1.48	8.23	12.17	-2.00	0.35	-1.50	0.35				
2C	1.34	10.50	14.07	-2.00	0.35	-1.50	0.35				
ЗC	1.48	10.50	15.54	-2.00	0.35	-1.50	0.35				
4C	1.50	10.50	15.75	-2.00	0.35	-1.50	0.35				
5C	1.48	10.50	15.54	-2.00	0.35	-1.50	0.35				
2E	1.34	9.93	13.30	-2.00	0.35	-1.50	0.35				
3E	1.48	9.93	14.69	-2.00	0.35	-1.50	0.35				
4E	1.50	9.93	14.89	-2.00	0.35	-1.50	0.35				
5E	1.48	9.93	14.69	-2.00	0.35	-1.50	0.35				
6A	1.48	5.87	8.69	-2.29	0.38	-1.53	0.38				
1D	1.30	7.50	9.75	-2.00	0.35	-1.50	0.35				

Sheet1

I-10	Value l	Units	Notes
h1	4.575 r	n	Step Height, >=0.3*H or 3 m, OK
w1	33.500 r	n	Upper Building Width
w2	7.800 r	n	Lower Building Width
0.25W	10.325 r	n	Check, OK
0.75W	30.975 r	n	Check not OK but close enough to be acceptable
b I-8 Coeff	6.8625 r 1.46	n	Lower Roof Distance, <30 m
<i>CpiCgi</i> Cgi Category	2 ;Cpi	-0.45	Gust Coefficient to 0.3

lw	1	Importance Normal
p50	0.8 kPa	1/50 Wind Load

p30										
Loads	External		External Suction Coeff (kPa)		Internal	Internal	Total Do	owndraft	Total Upli	ift (kPa)
Span	s/c	r	s/c	r	Pressure	Suction	s/c	r	s/c	r
2B	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
3B	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
4B	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
5B	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
2C	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
3C	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
4C	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
5C	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
2E	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
3E	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
4E	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
5E	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
6A	0.30	0.30	-1.83	-1.22	0.48	-0.72	1.02	1.02	-2.31	-1.70
1D	0.28	0.28	-1.60	-1.20	0.48	-0.72	1.00	1.00	-2.08	-1.68
1D	1.46	1.46	-1.60	-1.20	0.48	-0.72	2.18	2.18	-2.08	-1.68

Panel Self Weight

Sides	Panel Type	Height (m)	Width (m)	Area (m^2)	Window Area (m^2)	Final Area (m^2)	Panel Volume (m^3)	Panel Weight (kg)
North	С	10.160	6.054	61.510	2.200	59.310	10.922	26213
	Α	10.160	8.700	88.392	7.500	80.892	14.896	35751
	В	10.160	8.134	82.643	2.200	80.443	14.814	35553
	Е	5.860	7.868	46.108	0.000	46.108	8.491	20378
	С	10.160	4.684	47.591	0.000	47.591	8.764	21033
East	А	10.160	9.450	96.012	7.500	88.512	16.299	39119
	А	10.160	8.700	88.392	7.500	80.892	14.896	35751
	А	10.160	8.400	85.344	7.500	77.844	14.335	34404
	С	10.160	6.950	70.612	2.500	68.112	12.543	30103
	E	5.860	7.616	44.630	0.000	44.630	8.219	19725
South	G	10.160	15.070	153.111	42.416	110.695	20.385	48923
	Н	10.160	8.920	90.627	23.472	67.155	12.367	29680
	G	10.160	10.900	110.744	29.420	81.324	14.976	35942
West	F	5.860	7.616	44.630	8.800	35.830	6.598	15835
	С	10.160	4.650	47.244	2.500	44.744	8.240	19775
	А	10.160	8.478	86.136	7.500	78.636	14.481	34754
	D	10.160	11.733	119.211	12.500	106.711	19.651	47162
	I.	10.160	8.455	85.903	21.456	64.447	11.868	28483
Pan	el Thickne	ess (m)	0.18415					558583

Unit Weight Concrete (kg/m^3) 2400.000

i 1st story windows, south side

ii 2nd story windows, north south east and west sides

iii 1st story large entrance windows, west side

iv 1st story larger window, west side v access doors

Types:

Window

vi loading bay door

vii main entrance door and window combination

viii medical clinic access door and window combination

	Vin medical clinic access door and window combination							
	Panel	Window Type	Number	Height (m)	Width (m)	Area (m^2)	Total Area (m^2)	
North	С	V	1	2.200	1.000	2.200	2.2000	
	Α	ii	3	2.000	1.250	2.500	7.5000	
	В	V	1	2.200	1.000	2.200	2.2000	
	E							
	С							
East	A	ii	3	2.000	1.250	2.500	7.5000	
	A	ii	3	2.000	1.250	2.500	7.5000	
	Α	ii	3	2.000	1.250	2.500	7.5000	
	С	ii	1	2.000	1.250	2.500	2.5000	
	E							
South	G	i	1	3.200	6.825	21.840	42.4160	
		ii	4	2.000	1.250	2.500		
		viii	1	3.200	3.305	10.576		
	Н	vii	1	3.200	7.335	23.472	23.4720	
	G	i	1	3.200	6.850	21.920	29.4200	
		ii	3	2.000	1.250	2.500		
West	F	V	1	2.200	1.000	2.200	8.8000	
		vi	1	2.750	2.400	6.600		
	С	ii	1	2.000	1.250	2.500	2.5000	
	А	ii	3	2.000	1.250	2.500	7.5000	
	D	ii	3	2.000	1.250	2.500	12.5000	
		iv	1	4.000	1.250	5.000		
	I	iii	1	3.200	6.705	21.456	21.4560	

Lateral Wind Loads on Panels

Panels are divided based on symmetry with windows taken into account. However for the purposes of wind load calculations the greatest exterior widths and heights are used. For those panels that contain varying widths or heights (*) the greatest dimension is used. Therefore for the wind load calculations the panels can be grouped for similar dimensions, panels A and D as well as panels E and F.

Wind pressures are applied to the panels as a uniformly distributed lateral load. The net pressure must be calculated for each individual panel. The net pressure is the algebraic difference between external and internal pressure. The equation for calculating the wind loads is given in section 13.4.2 of the Concrete Design Handbook as well as The National Building Code of Canada clause 4.1.7:

p = lw q Ce(CpCg - CpiCgi)

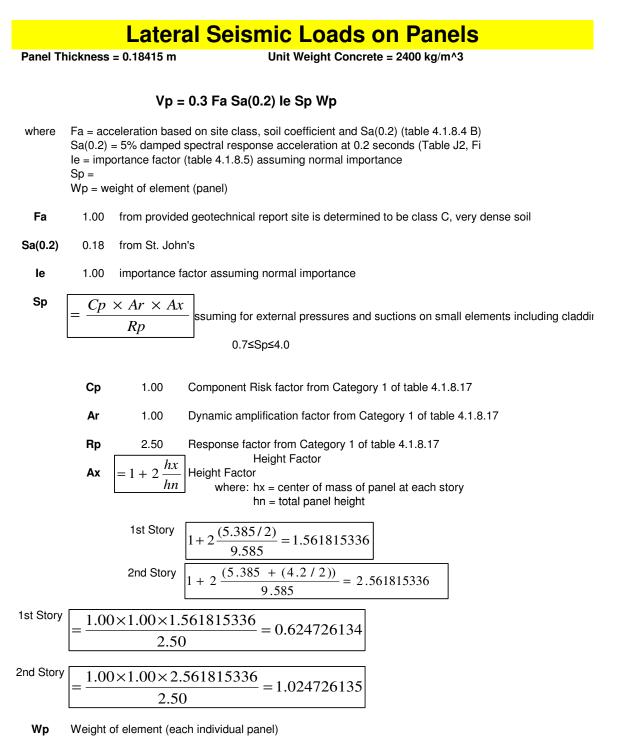
- where Iw = importance factor (table 4.1.7.1, re: table 4.1.2.1)
 - q = reference factor (1 in 50) (clause 4.1.7.1.4, re: subsection 1.1.3)
 - Ce = exposure factor (clause 4.1.7.1.5) assume Open Terrain
 - Cg = gust factor (clause 4.1.7.1.6 a&b)
 - Cp = external pressure coefficient (figure I-8, re: table I-2)
 - Cgi = internal gust effect factor (4.1.7.1.6 c)

Cpi = internal pressure coefficient

Iw ULS 1 assuming a normal importance SLS 0.75

q 0.8 kPa assume recommended minimum

Ce
$$\left[= \left(\frac{h}{10}\right)^{0.2} \ge 0.9 \right]$$
 assuming open terrain
h = reference height = panel height


Cg 2.5 assuming for external pressures and suctions on small elements including cladding

- Cp based on the area of the panel approximated from figure I-8
- Cgi 2 assumed value without detailed calculation
- Cpi -0.45 assuming design category 2, use values which produce most critical effect 0.3

					Inward	Outward	Outward
Panel Type	Height (m)	Width (m)	Area (m^2)	Ce	CpCg (e&w)	CpCg (e)	CpCg (w)
Ċ	10.160	6.054	61.510	1.003	1.30	-1.50	-1.50
А	10.160	8.700	88.392	1.003	1.30	-1.50	-1.50
В	10.160	8.134	82.643	1.003	1.30	-1.50	-1.50
E	5.860	7.868	46.108	0.899	1.30	-1.50	-1.50
С	10.160	4.684	47.591	1.003	1.30	-1.50	-1.50
А	10.160	9.450	96.012	1.003	1.30	-1.50	-1.50
A	10.160	8.700	88.392	1.003	1.30	-1.50	-1.50
A	10.160	8.400	85.344	1.003	1.30	-1.50	-1.50
C	10.160	6.950	70.612	1.003	1.30	-1.50	-1.50
Ĕ	5.860	7.616	44.630	0.899	1.31	-1.51	-1.50
G	10.160	15.070	136.874	1.003	1.30	-1.50	-1.50
н	10.160	8.920	120.593	1.003	1.30	-1.50	-1.50
G	10.160	10.900	96.904	1.003	1.30	-1.50	-1.50
F	5.860	7.616	42.003	0.899	1.31	-1.52	-1.51
Ċ	10.160	4.650	39.778	1.003	1.32	-1.53	-1.52
A	10.160	8.478	91.422	1.003	1.30	-1.50	-1.50
D	10.160	11.733	107.093	1.003	1.30	-1.50	-1.50
L	10.160	8.455	85.307	1.003	1.30	-1.50	-1.50
Givens:	Iw ULS 1	lw SLS 0.75	q 0.8	Cgi 2	Cpi - 1 -0.45	Cpi - 2 0.3	

p = lw q Ce(CpCg - CpiCgi)

		U	LS	SLS	5
Panel		Inward p	Outward p		Outward p
Туре	E or W	(kPa)	(kPa)	Inward p (kPa)	(kPa)
С	Е	1.766	-1.685	1.324	-1.264
Α	W	1.766	-1.685	1.324	-1.264
В	W	1.766	-1.685	1.324	-1.264
E	Е	1.582	-1.510	1.186	-1.132
С	Е	1.766	-1.685	1.324	-1.264
Α	Е	1.766	-1.685	1.324	-1.264
Α	W	1.766	-1.685	1.324	-1.264
Α	W	1.766	-1.685	1.324	-1.264
С	Е	1.766	-1.685	1.324	-1.264
E	Е	1.589	-1.517	1.192	-1.138
G	Е	1.766	-1.685	1.324	-1.264
Н	W	1.766	-1.685	1.324	-1.264
G	Е	1.766	-1.685	1.324	-1.264
F	Е	1.589	-1.524	1.192	-1.143
С	Е	1.782	-1.709	1.336	-1.282
Α	W	1.766	-1.685	1.324	-1.264
D	W	1.766	-1.685	1.324	-1.264
I	Е	1.766	-1.685	1.324	-1.264

Volume Each Panel x Unit Weight of Concrete (2400 kg/m^3)

Sides	anel Typ	Height (m)	Width (m)	Area (m^2)	/olume (m^3	Weight (kg)	
North	С	10.160	6.054	61.510164	11.3270967	27185.03	266.6852
	Α	10.160	8.700	88.392	16.2773868	39065.73	383.2348
	В	10.160	8.134	82.642964	15.2187018	36524.88	358.3091
	Е	5.860	7.868	46.108238	8.49083203	20378.00	199.9081
	С	10.160	4.684	47.590964	8.76387602	21033.30	206.3367
East	Α	10.160	9.450	96.012	17.6806098	42433.46	416.2723
	А	10.160	8.700	88.392	16.2773868	39065.73	383.2348
	Α	10.160	8.400	85.344	15.7160976	37718.63	370.0198
	С	10.160	6.950	70.612	13.0031998	31207.68	306.1473
	Е	5.860	7.616	44.62976	8.2185703	19724.57	193.4980
South	G	10.160	15.070	153.1112	28.1954275	67669.03	663.8331
	Н	10.160	8.920	90.6272	16.6889989	40053.60	392.9258
	G	10.160	10.900	110.744	20.3935076	48944.42	480.1447
West	F	5.860	7.616	44.62976	8.2185703	19724.57	193.4980
	С	10.160	4.650	47.244	8.6999826	20879.96	204.8324
	А	10.160	8.478	86.13648	15.8620328	38068.88	373.4557
	D	10.160	11.733	119.210836	21.9526754	52686.42	516.8538
	I	10.160	8.455	85.9028	15.8190006	37965.60	372.4426
				1st Story	2nd Story		
Givens:	Fa	Sa(0.2)	le	Sp	Sp		
	1.00	0.18	1.00	0.624726134	1.02472614		

Vp = 0.3 Fa Sa(0.2) le Sp Wp

			Vp	
Sides	Panel Type	1st Story	2nd Story	Force (kN)
North	С	917.0928	1504.289494	23.75
	Α	1317.8906	2161.710331	34.13
	В	1232.1747	2021.112194	31.91
	E	687.45603	1127.620762	17.81
	С	709.5629	1163.882235	18.38
East	Α	1431.5019	2348.06467	37.08
	Α	1317.8906	2161.710331	34.13
	Α	1272.4461	2087.168595	32.96
	С	1052.7977	1726.88354	27.27
	E	665.41249		6.53
South	G	2282.8289	3744.479849	59.13
	Н	1351.2166	2216.37427	35.00
	G	1651.1503	2708.349725	42.77
West	F	665.41249	1091.463178	17.23
	С	704.3898	1155.396901	18.24
	Α	1284.2617	2106.549446	33.26
	D	1777.3875	2915.414242	46.04
	I	1280.7776	2100.83458	33.17

Panel Axial Loads

Roof and Floor Connections

Using top view panel is divided into blocks along beams lines. See diagram below.

Worst Case Scenario Roof Load: 8.93 kPA

Worst Case Scenario Floor Load: 14.23 kPa

Section	Joist Length (m)	Section Width (m)	# of Joists	Spacing (m)	Tributary Area (m^2)	Roof Force (kN)	Floor Force (kN)	Roof Force (kN/m)
1	9.925	8.900	5.000	1.483	14.719	131.439	209.448	44.315
2	9.925	9.000	5.000	1.500	14.888	132.945	211.849	44.315
3	9.925	8.900	5.000	1.483	14.719	131.439	209.448	44.315
4	9.925	6.700	4.000	1.340	13.300	118.765	189.252	44.315
5	7.500	7.800	4.000	1.560	11.700	104.481	166.491	33.488
6	10.500	8.900	5.000	1.483	15.572	139.053	221.582	46.883
7	10.500	9.000	5.000	1.500	15.750	140.648	224.123	46.883
8	10.500	8.900	5.000	1.483	15.572	139.053	221.582	46.883
9	10.500	6.700	4.000	1.340	14.070	125.645	200.216	46.883
10	14.095	8.900	5.000	1.483	20.903	186.663	297.448	62.934
11	8.225	9.000	5.000	1.500	12.338	110.174	175.563	36.725
12	8.225	8.900	5.000	1.483	12.198	108.925	173.573	36.725
13	8.225	6.700	4.000	1.340	11.022	98.422	156.836	36.725

- -

Sides	Panel Type	# of Joists	# of Beams	Channel Area (m^2)	Roof Force per Channel (kN)	Floor Force per Channel (kN)
North	С	-	-	4.489	40.088	63.881
	А	-	1.000	5.829	52.053	82.947
	В	-	-	5.450	48.667	77.552
	Е	-	-	6.137	54.806	87.333
	С	-	-	3.138	28.026	44.659
East	А	5.000	1.000	-	-	-
	А	5.000	1.000	-	-	-
	А	5.000	-	-	-	-
	С	4.000	1.000	-	-	-
	Е	4.000	-	-	-	-
South	G	-	-	11.174	99.787	159.012
	Н	-	-	6.614	59.065	94.120
	G	-	1.000	8.082	72.175	115.012
West	F	4.000	-	-	-	-
	С	3.000	-	-	-	-
	А	5.000	1.000	-	-	-
	D	6.000	2.000	-	-	-
	I	5.000	-	-	-	-

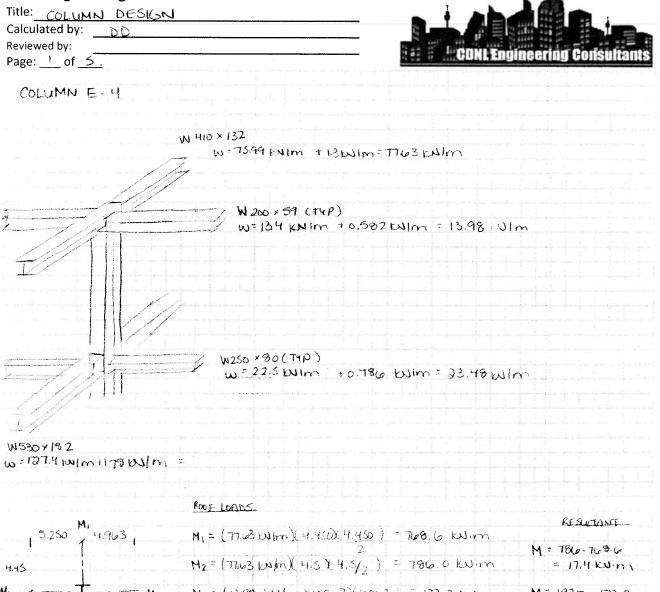
Interior Beam forces

Beam	Length (m)	Width (m)	Area (m^2)	Roof Force (kN)	Floor Force (kN)
1	8.225	1.492	12.268	109.550	174.568
2	10.500	1.492	15.661	139.850	222.852
3	9.925	1.492	14.803	132.192	210.649
4	8.225	1.492	12.268	109.550	174.568
5	10.500	1.492	15.661	139.850	222.852
6	9.925	1.492	14.803	132.192	210.649
7	8.225	1.412	11.610	103.674	165.204
8	10.500	1.412	14.821	132.349	210.899
9	9.925	1.412	14.009	125.102	199.350

Coordinates of Openings

Sides	Panel Type	Opening	deltax (m)	deltay (m)	Height (m)	Width (m)	
North	Ċ	1	-	-	10.160	6.054	
	-	d1	0.384	0.000	2.200	1.000	
	А	3	-	-	10.160	8.700	
	-	w1	0.978	6.235	2.000	1.250	
	-	w2	3.778	6.235	2.000	1.250	
	-	w3	6.578	6.235	2.000	1.250	
	В	1	-	-	10.160	8.134	
	-	d1	0.340	5.585	2.200	1.000	
	E	0	-	-	5.860	7.868	
	С	0	-	-	10.160	4.684	
East	Α	3	-	-	10.160	9.450	
	-	w1	1.825	6.235	2.000	1.250	
	-	w2	4.625	6.235	2.000	1.250	
	-	w3	7.425	6.235	2.000	1.250	
	А	3	-	-	10.160	8.700	
	-	w1	0.775	6.235	2.000	1.250	
	-	w2	3.575	6.235	2.000	1.250	
	-	w3	6.675	6.235	2.000	1.250	
	Α	3	-	-	10.160	8.400	
	-	w1	0.775	6.235	2.000	1.250	
	-	w2	3.575	6.235	2.000	1.250	
	-	w3	6.375	6.235	2.000	1.250	
	С	1	-	-	10.160	6.950	
	-	w1	0.775	6.235	2.000	1.250	
	Е	0	-	-	5.860	7.616	
South	G	9	-	-	10.160	15.070	
	-	w1	6.729	0.000	3.200	6.825	
	-	w2	3.594	6.235	2.000	1.250	
	-	w3	5.959	6.235	2.000	1.250	
	-	w4	8.324	6.235	2.000	1.250	
	-	w5	10.689	6.235	2.000	1.250	
	-	d1	2.559	0.000	3.200	3.305	
	Н	1	-	-	10.160	8.920	
	-	d1	0.788	0.000	3.200	7.335	
	G	7	-	-	10.160	10.900	
	-	w1	1.505	0.000	3.200	6.850	
	-	w2	2.500	6.235	2.000	1.250	
	-	w3	4.600	6.235	2.000	1.250	
	-	w4	6.700	6.235	2.000	1.250	

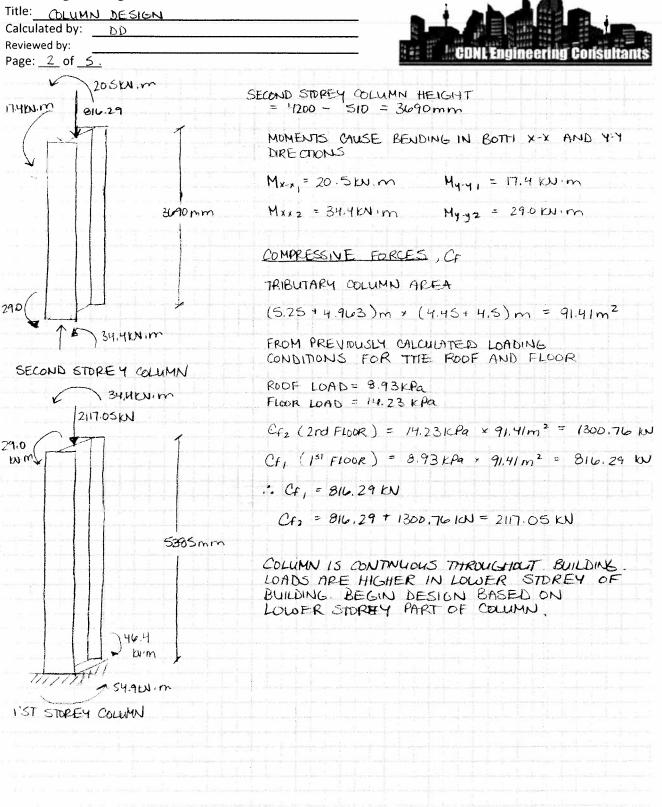
West	F		-	-	5.860	7.616	
	-	d1	0.400	0.000	2.200	1.000	
	-	d2	2.700	0.000	2.750	2.400	
	С		-	-	10.160	4.650	
	-	w1	2.125	6.235	2.000	1.250	
	А		-	-	10.160	8.478	
	-	w1	0.775	6.235	2.000	1.250	
	-	w2	3.575	6.235	2.000	1.250	
	-	w3	6.375	6.235	2.000	1.250	
	D		-	-	10.160	11.733	
	-	w1	2.998	6.235	2.000	1.250	
	-	w2	5.798	6.235	2.000	1.250	
	-	w3	8.598	6.235	2.000	1.250	
	-	w4	1.353	2.465	4.000	1.250	
	I		-	-	10.160	8.455	
	-	w1	0.875	0.000	3.200	6.705	


Page | D-1

Appendix D DESIGN CALCULATIONS

Structural Steel Schedule		
Description	Quantity	Length (m)
N-S Level 1 & Roof Main Beam [C,E]	8	8.9
N-S Level 1 & Roof Main Beam [C,E]	4	9
N-S Level 1 & Roof Main Beam [C,E]	4	6.7
E-W Level 1 & Roof Main Beam [3,4,5]	6	8.225
E-W Level 1 & Roof Main Beam [3,4,5]	6	10.5
E-W Level 1 & Roof Main Beam [3,4,5]	6	9.925
Second Storey Floor Joists	80	731.67
Roof Joists	80	731.67
Steel Columns	6	9.585

Structural Steel Schedule		
Description	Quantity	Length (m)
N-S Level 1 & Roof Main Beam [C,E]	8	8.9
N-S Level 1 & Roof Main Beam [C,E]	4	9
N-S Level 1 & Roof Main Beam [C,E]	4	6.7
E-W Level 1 & Roof Main Beam [3,4,5]	6	8.225
E-W Level 1 & Roof Main Beam [3,4,5]	6	10.5
E-W Level 1 & Roof Main Beam [3,4,5]	6	9.925
Second Storey Floor Joists	80	731.67
Roof Joists	80	731.67
Steel Columns	6	9.585



M2

 $M = (13.93 \text{ km})(4.5 \times 4.5/2) = 1283.5 \text{ km} \text{ m} = 186.768.0 \text{ km} \text{ m} = 170.768.0 \text{ km} \text{ m} = 17.4 \text{ km} \text{ m} = 172.2 \text{ km} \text{ m} = 172.2 \text{ km} \text{ m} = 192.7 - 172.2 \text{ m} = 20.5 \text{ km} \text{ m} = 172.2 \text{ km} \text{ m} = 192.66 \text{ km} \text{ m} = 192.7 \text{ m} = 172.2 \text{ m} = 20.5 \text{ km} \text{ m} = 192.66 \text{ km} \text{ m} = 192.7 \text{ m} = 120.5 \text{ km} \text{ m} = 192.66 \text{ km} \text{ m} = 192.7 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ km} \text{ m} = 112.2 \text{ m} = 120.5 \text{ m} = 112.2 \text{ m} = 120.5 \text{ m} = 120.5$

 $M = 29.0 \text{ KW} \cdot \text{m}$ $M_2 = (129.63 \text{ X} + 50 \text{ X} + 50 \text{ /}_2) = 1312.5 \text{ KW} \cdot \text{m}$ $M_3 = (23.48 \text{ X} + 1063 \text{ X} + 1063 \text{ /}_2) = 289.17 \text{ KW} \cdot \text{m}$ $M_4 = (23.48 \text{ X} + 250 \text{ (5.250/2)} = 323.58 \text{ KW} \cdot \text{m}$

alculated by:bb	
eviewed by: Page: <u>3</u> of <u>5</u> .	CDNL Engineering Consultan
$L = 5385 mm$ $C_f = 2107.05 kN$	
$M_{X-x1} = 34.4 \text{ kN} \cdot \text{m}$ $M_{yy1} = 29.0 \text{ kN}$	
Mxx 2 = 54.9KN m Myyz = 46.4KN	J'M
TRY W310 × 129	
CHECK SECTION CLASS	
TO USE CLAUSE 13.8.2 - CHSS 2 LIN	۲
FLANGE $\rightarrow 302$ = 7.47 2(20.6)	4 170 = 170 = 9.09 . FLANGE AT LEAST JFy J330 CLASS 2
$WEB = \frac{h}{W} = \frac{277}{11.9} = 23.35$	< 1700 (1-0.61 Cr) JFy ØCg
	1700 (1-0.61 (2117.05)) =65.40 WEB IS AT 5330 (0.915120)) LEAST CLAS
CHECK CROSS SECTONAL STRENGTH	5350 (0.9 Y 5120)/ LEAST CLAS
<u>x: x DIRECTION</u> $C_1 = C_{10} = 5120 \text{ kN}$ <u>MEXAT</u> = 6 Mrx = 671 KN:m MEXAZ S	34.4KNM = 0.63 (DUBLE CURVATURE) 54,9KNM
$C_1 = C_{ro} = 5120 \text{ kN}$ MEXT = 2	Mfy=y1 = 0.03 LOOUBLE CURVATURET
$C_{1} = C_{ro} = 5120 \text{ kN} \qquad \frac{M_{F_{XYT}}}{M_{rx}} = 671 \text{ kN} \text{ km} \qquad M_{F_{XYT}} = 671 \text{ kN} \text{ km} \qquad M_{F_{XYT}} = 671 \text{ km} \text{ km} \text{ km} \qquad M_{F_{XYT}} = 5716 \text{ km} km$	MFY-JI = 0.03 LOOUBLE CURVATURIT MFYJ2
C1 = Cro = 5120 KN MEXAT = 3 Mrx = 671 KN:M HIXX2 S FROM TABLE H-6, 516.01 W1 = 0.40	Mfy=y1 = 0.03 LOOUBLE CURVATURET
$C_{1} = C_{r0} = 5120 \text{ kN} \qquad \frac{M_{F_{XYT}}}{M_{rx}} = 671 \text{ kN} \text{ m} \qquad \frac{M_{F_{XYT}}}{M_{1Xx2}} = 3$ $FROM TABLE H-6, 516.01$ $(1.0) = 0.40$ $\frac{KL_{x}}{r_{x}} = (1.0) 5385 \text{ mm} = 39.3$ $F_{x} = (1.37)$ $FROM TABLE H-7, INTERPOLATING$	SY, 9 W.M <u>Mfy-y1</u> = 0.03 (Double CurVATURE <u>Mfyy2</u> <u>Kly = (1.0X 5395)</u> = 69,0 <u>ry</u> (78)
$C_{1} = C_{70} = 5120 \text{ kN} \qquad \frac{M_{F_{XYT}}}{M_{TX}} = 671 \text{ kV} \cdot \text{m} \qquad M_{F_{XYT}} = 3700 \text{ km} $	$Hfy=y_1 = 0.63 (Double CueVATURT Mfy=y_2 Kly = (1.0X 5395) = 69,0 ry (78) MPa × 16 Soomm2 HW A Ce = 415 MPa > 10500$
$C_{1} = C_{70} = 5120 \text{ kN} \qquad \frac{M_{F_{XYT}}}{M_{TX}} = 671 \text{ kV} \cdot \text{m} \qquad M_{F_{XYT}} = 3700 \text{ km} $	$Hfy=y_1 = 0.63 (Double CueVATURT Mfy=y_2 Kly = (1.0X 5395) = 69,0 ry (78) MPa × 16 Soomm2 HW A Ce = 415 MPa > 10500$
$C_{r} = C_{ro} = 5120 \text{ kN} \qquad ME_{xxr} = 63120 \text{ kN} \qquad ME_{xxr} = 63120 \text{ kN} \qquad ME_{xxr} = 63120 \text{ kN} \text{ min} = 63120 \text{ kN} \text{ min} = 39.3 \text{ mi} = 39.3 \text{ min} = $	SY, 9 W. M $ \begin{array}{rcl} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & $
$C_{1} = C_{10} = 5120 \text{ kN} \qquad \frac{M_{F_{XYT}}}{M_{rx}} = 671 \text{ kW} \cdot \text{m} \qquad \frac{M_{F_{XYT}}}{M_{IX_{12}}} = 3$ $FROM TABLE H-G, 516.01 \qquad \qquad$	SY, 9 W.M $ \begin{array}{lllllllllllllllllllllllllllllllllll$
$C_{1} = C_{10} = 5120 \text{ kN} \qquad \frac{M_{F_{XYT}}}{M_{rx}} = 671 \text{ kW} \text{ m} \qquad M_{1X_{12}} = 3$ $FROM TABLE H-G, 516.01 \qquad W_{1} = 0.40$ $KL_{x} = (1.0X 538Smm) = 39.3 \qquad (137)$ $FROM TABLE H-T, INTERPOLATING$ $C_{e} = 1279 \text{ MPa} \Rightarrow C_{e} = 1274 \qquad A$ $C_{e} = 21171 = 0.01 \qquad Fr$ $C_{e} = 21171 = 0.01 \qquad Fr$ $U_{1x} = W_{1x} U = (0.40X 1.01) = 0.$ $U_{1x} = 1.0$	SY, 9 W.M $ \begin{array}{lllllllllllllllllllllllllllllllllll$
$C_{I} = C_{I0} = 5120 \text{ kN} \qquad ME_{XXT} = 3$ $Mr_{X} = 671 \text{ kW} \text{ m} \qquad MI_{XX2} = 3$ $FROM TABLE H-6, 516.01$ $W_{1} = 0.40$ $\frac{KL_{x}}{W_{1}} = (1.025385 \text{ mm}) = 39.3$ $r_{x} \qquad (137)$ $FROM TABLE H-7, INTERPOLATING$ $C_{z} = 1279 \text{ MPa} \Rightarrow C_{z} = 1279$ $A \qquad = 2117.1 = 0.01 \qquad Fr$ $C_{z} = 2117.1 = 0.01 \qquad Fr$ $U_{1,x} = W_{1,x} U = (0.4021.01) = 0.21$	SY, 7 IW: M $ \begin{array}{lllllllllllllllllllllllllllllllllll$

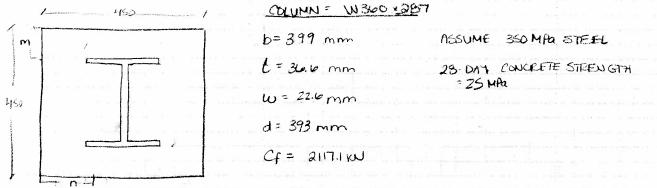
CDNL Engineering Consultants Title: COLUMN DESIGN Calculated by: DD Reviewed by: CONFERNINEE Page: 4 of 5. OVERALL MEMBER STRENGTH $\frac{KL_y}{r_y} = \frac{(1.0)(5385)}{(78)} = 69.0$ KL = (10×5385mm) = 39.3 (137) Yx. FROM TABLE 4-4 (FOR K4 = 69.0) $\frac{C_{L}}{A}$ = 203 MPa Cr = (203×16500) = 3349.5 KN Mrx= 671KN m Mry= 308KN m U1x = 1.0 , U1y = 1.0 $\lambda_y = \frac{K_{Ly}}{r_y} \int \frac{F_y}{\pi^2 E} = (10X 5335) \int \frac{350}{\pi^2 (200 000)} = 0.919$ \$= 0.6 + 0.4 2 = 0.6 + 0.4(0.919) = 0.9676 70.85 . B-0.85 2117.1 7 0.85 × 1.0 × 54.9 + 0.85 × 1.0 × 46.4 3349.5 671 308 0.632 + 0.069 + 0.128 = 0.829 × 1.0 . MEMBER STRENGTH OKMY LATERAL - TORSIONAL BUCKLING. Gr = Cty = Gr = 3349.5 L= 5395 > Lu = 5080 INTERPOLATING TO FIND MI, FOR UNSUPPORTED LENGTH OF 5385. $\frac{6000 - 5090}{671 - 643} = \frac{6000 - 5395}{671 - Hr}$ 32.86 = 615 = 7 Mrx' = 652.3 WmU1 = 1.0 U1 = 1.0 B=0.85 T 0.35 + 1.0 × 54.9 + 0.35 × 1.0 × 464 = 0.632 + 0.072 + 0.128 2117,1 652.3 3349.5 308 = 0.832 ≤ 1.0 W310 × 129 COLUMN IS ADEQUATE.

Title: COLUMN DESIGN

Calculated by: DDReviewed by: Page: <u>5</u> of <u>5</u>.

BLAXIAL BENDING

 $\frac{M_{fx}}{M_{rx}} + \frac{M_{Fy}}{M_{ry}} = \frac{54.9}{452.3} + \frac{40.4}{308} = 0.084 + 0.151 = 0.235 (1.0).$


CHECK SHEAR IN COLUMN WEB. - COMPLETED IN CONNECTION DESILIN.

FROM COLUMN SPREADSHEETS, IT CAN BE SEEN THAT THIS COLUMN DOES NOT REPRESENT THE HIGHEST LOAD CONDITION.

COLUMN SIZE W 3404287 GOVERNS.

T

Title: COLUMN BAS	SE PLATE DESIGN	
Calculated by: DD		
Reviewed by:		
Page: of		CONTREPRESENTATION CONSUMAINS

TRY B=C= 700,mm ', A= 20300 mm².

DETERMINE m and n 0.95d = 0.95 × 393 mm = 373 mm

$$m = (700 - 379) = 160.5 nm$$

$$n = (700 - 319) = 319 \text{ mm}$$

 $n = (700 - 319) = 190.5 \text{ mm}$

PLATE THERE SS

$$t_{p} = \int \frac{2(r_{m})^{2}}{B(\phi f_{y})} = \int \frac{2(r_{m})^{2}}{(700)^{2}(0.4 \times 350/10^{3})} = \int \frac{(2)(217.1)(100.5)^{2}}{(700)^{2}(0.4 \times 350/10^{3})} = \int \frac{(2)(217.1)(100.5)^{2}}{(700)^{2}(0.4 \times 350/10^{3})} = \frac{(2)(217.1)(100.5)^{2}}{(700)^{2}(0.5)}} = \frac{($$

USE 35 mm PLATE

PL25, 460, 460.

Loads on Connection Beams

Roof Beams

Column C-3		Column C-	-4	Column C-	5
B1 =	66.88 kN/m	B1 =	69.66 kN/m	B1 =	69.67 kN/m
B2 =	69.66 kN/m	B2 =	69.67 kN/m	B2 =	69.66 kN/m
Вз =	13.4 kN/m	B3 =	13.4 kN/m	B3 =	13.4 kN/m
B4 =	13.4 kN/m	B4 =	13.4 kN/m	B4 =	13.4 kN/m

Column E-3		Column E	-4	Column E-	5
B1 =	72.96 kN/m	B1 =	77.28 kN/m	B1 =	75.98 kN/m
B2 =	75.98 kN/m	B2 =	77.28 kN/m	B2 =	75.98 kN/m
Вз =	13.4 kN/m	Вз =	13.982 kN/m	B3 =	13.4 kN/m
B4 =	13.4 kN/m	B4 =	13.982 kN/m	B4 =	13.4 kN/m

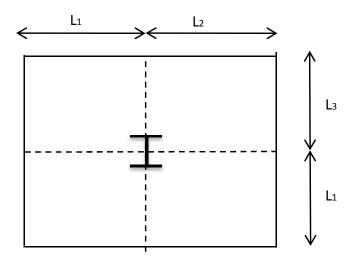
Floor Beams

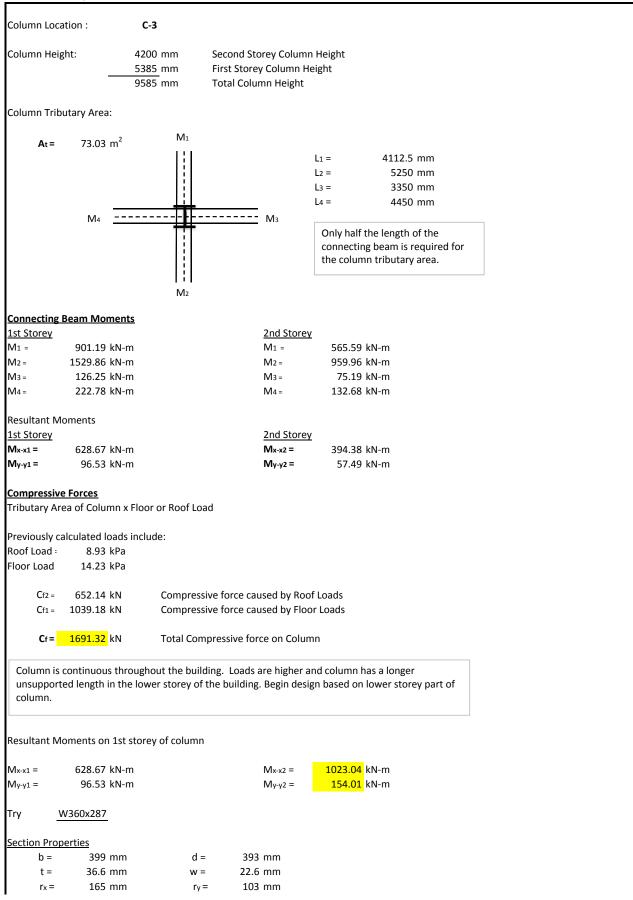
Column (2-3	Column C	2-4	Column C	-5
B1 =	106.57 kN/m	B1 =	111.01 kN/m	B1 =	111.01 kN/m
B2 =	111.01 kN/m	B2 =	111.02 kN/m	B2 =	111.02 kN/m
B3 =	22.5 kN/m	B3 =	22.5 kN/m	B3 =	22.5 kN/m
B4 =	22.5 kN/m	B4 =	22.5 kN/m	B4 =	22.5 kN/m
Column E	E-3	Column E	-4	Column E	-5

B1 =

B2 =

Вз =


B4 =


B1 =	116.24 kN/m
B2 =	121.07 kN/m
B3 =	22.5 kN/m
B4 =	22.5 kN/m

E-4		
	122.85	kN/m
	123.08	kN/m
	23.286	kN/m
	23.286	kN/m

121.11 kN/m
121.07 kN/m
22.5 kN/m
22.5 kN/m

Column Trib	utary Area				
Column	L 1 (mm)	L2 (mm)	L3 (mm)	L4 (mm)	Area (m ²)
C-3	4112.5	5250	3350	4450	73.03
C-4	4112.5	5250	4450	4500	83.79
C-5	4112.5	5250	4500	4450	83.79
E-3	5250	4962.5	3350	4450	79.66
E-4	5250	4962.5	4450	4500	91.40
E-5	5250	4962.5	4500	4450	91.40

5385 mm 36600 mm² Lx = A = Check Section Class To use Clause 13.8.2, column must meet the Class 2 limit. Flange: <u>b</u> 5.45 < Class 2 limit = 9.09 2t Web: 14.15 < Class 2 limit = 65.4 h w Section meets Class 2 requirements, therefore Clause 12.8.3 is applicable. $\frac{C_{f}}{C_{r}} + \frac{0.85U_{1x}M_{fx}}{M_{rx}} + \frac{\beta U_{1y}M_{fy}}{M_{ry}} \le 1.0$ Check Cross-Sectional Strength From CSA G40.21 350W ASTM A992, A572 Grade 50 W Columns Factored Axial Compressive Resistances, Cr (kN) Page 4-37 of CISC Handbook of Steel Construction Cr = 11400 kN 1800 kN-m Mrx = 919 kN-m Mry = culating ω1 (*Clause 13.8.5*) $M_{xx1} = 0.614507$ (Double Curvature) $\frac{M_{yy1}}{M_{yy2}} = 0.626741 \text{ (Double Curvature)}$ M_{NW2} From Table 4-6 of CISC Handbook of Steel Construction ω1 = 0.4 $\frac{KL_y}{r_y} =$ KL_{ac} = 32.64 52.28 r_{x} From Table 4-7, Interpolating $\frac{C_{\theta}}{A} =$ 1810 Mpa 730 Mpa = Ce= 66246 kN Ce= 26718 kN From Table 4-8 $C_{f} =$ 0.03 0.06 = \mathcal{C}_{o} 1.03 U = 1.08 U = U1x = ω1*U U1y = ω1*U 0.412 < 1.0 = = 0.432 < 1.0 1 U1x = U1y = 1 $\frac{C_f}{C_r} + \frac{0.85 H_{1x} M_{fx}}{M_{rx}} + \frac{\beta H_{1y} M_{fy}}{M_{ry}} \leq 1.0$ β = 0.6 Therefore, 0.732 < 1.0 Therefore Cross-Sectional Strength Check Does not Govern Check Overall Member Strength

$$\frac{1}{1} 32.64 \qquad \frac{KL_y}{2y} = 52.28$$
From Table 4.4, Using the governing case for bending about the y-axis
$$= 246 \text{ Mpa}$$

$$Cr = 9003.6 \text{ kN}$$

$$\lambda_y = \frac{KL_y}{7y} \sqrt{\frac{E_y}{8\pi^2}} = 0.696194$$

$$\beta = 0.6 + 0.4*\lambda = 0.878478 > 0.85 \qquad \beta = 0.85$$

$$\frac{C_y}{C_y} \left(\frac{0.65U_{10}M_{y}}{N_{y}} + \frac{0.4y}{M_{y}} \right)^{M_{y}} \leq 1.0$$

$$0.813399 < 1.0 \qquad \text{Therefore, member strength ok}$$
Check Lateral Torsional Buckling
$$C_y = C_1 = 9003.6 \text{ kN}$$
Since the unsupported column length L = 5385 mm is greater than the Lu = 5080 mm, we must interpolate the factored moment restance of columns (CSA G40.21 350 W, page 4-118 of CISC Handbook of Steel Construction)
Interpolating for find M 1800 kN-m
$$\frac{U1x = 1}{M_y} = 1$$

$$\beta = 0.85$$

$$\frac{C_y}{C_y} = \frac{0.656U_{10}M_{y}}{N_{y}M_{x}} + \frac{0.4y_yM_{y}Y}{M_{y}Y} \leq 1.0$$

$$0.813399 < 1.0 \qquad \text{Therefore, torsional-lateral buckling does not govern}$$
Check Biaxial Bending
$$\frac{H_{y_x}}{H_{y_y}} = 0.235 < 1.0$$

Column					
Column Loca	ition :	C-4			
Column Heig		5385 mm Fi	econd Storey Colum rst Storey Column H otal Column Height		
Column Trib	utary Area:				
At =	83.79 m ²	M1			
	M4		M3	L1 = 4112.5 mm L2 = 5250 mm L3 = 4450 mm L4 = 4500 mm	
		M2		connecting beam is requir the column tributary area.	
<u>Connec</u> ting I	Beam Moments				
1st Storey			2nd Store		
M1 =	938.74 kN-m		M1 =	589.05 kN-m	
M2 = M3 =	1529.99 kN-m 222.78 kN-m		M2 = M3 =	960.17 kN-m 132.68 kN-m	
M4 =	222.78 kN-m 227.81 kN-m		M4 =	135.68 kN-m	
Resultant Mo <u>1st Storey</u>	oments		2nd Store	,	
$M_{x-x1} =$	591.26 kN-m		<u>2nd Store</u> Mx-x2 =	<u>/</u> 371.13 kN-m	
My-y1 =	5.03 kN-m		My-y2 =	3.00 kN-m	
Compressive Tributary Are		loor or Roof Load			
Previously ca Roof Load :	alculated loads in 8.93 kPa	nciude:			
Floor Load	14.23 kPa				
		. .	fama - 11 -	61 I-	
Cf2 = Cf1 =	748.28 kN 1192.39 kN		force caused by Roo force caused by Flo		
Cf =	1940.68 kN	Total Compre	essive force on Colur	nn	
	1340.00 KN				1
				and column has a longer ign based on lower storey par	t of
Resultant Mo	oments on 1st s	torey of column			
Mx-x1 =	591.26 kN-m		Mx-x2 =	962.38 kN-m	
My-y1 =	5.03 kN-m		My-y2 =	8.03 kN-m	
Try <u>V</u>	V360x287				
Section Prop	erties				
b =	399 mm	d =	393 mm		
t =	36.6 mm	w =	22.6 mm		
r _x =	165 mm	r _y =	103 mm		

n	A =	36600 m	ım²	
ımn must me	eet the Cla	ss 2 limit.		
5.45	< (Class 2 limi	t = 9.09	
14.15	< (Class 2 limi	t = 65.4	
uirements, tl	herefore C	lause 12.8.	3 is applicable	2.
<u>⊻</u> ≤ 1.0				
ength STM A992, A I Compressiv ok of Steel C	e Resistan	ces, Cr (kN)	
-m				
-m				
) ouble Curvat	ure)	$\frac{M_{yy1}}{M_{yy2}} = 0$	0.626741 (Dou	ible Curvature)
ndbook of S				
	$\frac{KL_y}{r_y} =$			
ting				
)a	$rac{C_{g}}{A}$	=	730 Mpa	I
		Ce=	26718 kN	
		C ₁ = C _e	0.07	
		U =	1.08	
		U1y =	ωı*U	
.0		= U1y =	0.432 < 1.0 1)
$\frac{H_{1y}M_{fy}}{M_{ry}} \leq 1.0$	0	β =	0.6	
The	refore Cro	ss-Sectiona	al Strength Che	eck Does not Gov
rength				
re				Therefore Cross-Sectional Strength Che

$$\frac{1}{1} 32.64 \qquad \frac{KL_{y}}{r_{y}} = 52.28$$
From Table 4-4, Using the governing case for bending about the y-axis
$$= 246 \text{ Mpa}$$

$$Cr = 9003.6 \text{ kN}$$

$$\lambda_{y} = \frac{KL_{y}}{r_{y}} \sqrt{\frac{E_{y}}{E\pi^{2}}} = 0.696194$$

$$\beta = 0.6 + 0.4^{2} \lambda = 0.878478 > 0.85 \quad \beta = 0.85$$

$$\frac{C_{y}}{C_{y}} + \frac{0.85U_{1x}R_{yx}}{N_{ry}} + \frac{\beta U_{y}R_{y}R_{y}}{N_{ry}} \leq 1.0$$

$$0.677433 < 1.0 \qquad \text{Therefore, member strength ok}$$
Check Lateral Torsional Buckling
$$C_{y} = C_{x} = 9003.6 \text{ kN}$$
Since the unsupported column length L = 5385 mm is greater than the Lu = 5080 mm, we must interpolate the factored moment restance of columns (CSA G40.21 350 W, page 4-118 of CISC Handbook of Steel Construction)
Interpolating for find M 1800 kN-m
$$\frac{U1x = 1}{\beta = 0.85}$$

$$\frac{C_{y}}{L_{y}} = \frac{0.655U_{1x}R_{yx}}{R_{yy}} + \frac{\beta U_{y}R_{yy}R_{yy}}{R_{yy}} \leq 1.0$$

$$0.677433 < 1.0 \qquad \text{Therefore, torsional-lateral buckling does not govern}$$

$$\frac{Check Biazial Bending}{R_{yy}} + \frac{R_{y}}{R_{yy}} = 0.235 < 1.0$$

Column Design	1				
Column Location :		C-5			
Column Height:		4200 mm <u>5385</u> mm 9585 mm	Second Storey Co First Storey Colu Total Column He	mn Height	
Column Tributary A	Area:				
At =	83.79 m ²	M1	M3	connectin	4112.5 mm 5250 mm 4500 mm 4450 mm the length of the ng beam is required for nn tributary area.
		M2			
Connecting Beam I	<u>Moments</u>				
<u>1st Storey</u>			<u>2nd S</u>	torey	
M1 =	1024.15 kN-m	า	M1 =	589.17	kN-m
M2 =	1668.50 kN-m	า	M2 =	959.96	kN-m
M3 =	227.81 kN-m		M3 =	135.68	kN-m
M4 =	222.78 kN-m	า	M4 =	132.68	kN-m
Resultant Moment	S				
<u>1st Storey</u>				torey	
Mx-x1 =	644.35 kN-m		Mx-x2		
Му-у1 =	5.03 kN-m	า	Му-у2	= 3.00	kN-m
Previously calculate Roof Load = Floor Load = Cf2 = Cf1 =	ed loads include 8.93 kPa 14.23 kPa 748.28 kN 1192.39 kN	Compress	ive force caused b ive force caused b	-	
Cf =	1940.68 kN		pressive force on		
length in the low	er storey of the	building. Begin	.oads are higher ar design based on lo		longer unsupported of column.
Resultant Moment					
Mx-x1 =	644.35 kN-m		Mx-x2		
M _{y-y1} =	5.03 kN-m	1	My-y2	= 8.03	kN-m
Try <u>W3</u>	60x287				
Section Properties					
b =	399 mm	d =	393 mm		
t =	36.6 mm	w =			
r _x =	165 mm	ry÷			
Lx =	5385 mm	A	2		
Check Section Class					
To use Clause 13.8.		t meet the Class	2 limit.		
Flange:	<u>b</u>	5.45	< Class 2 limit = 9	9.09	

2t Web: 14.15 < Class 2 limit = 65.4 h w Section meets Class 2 requirements, therefore Clause 12.8.3 is applicable. $\frac{C_f}{C_r} + \frac{0.85 U_{1x} M_{fx}}{M_{rx}} + \frac{\beta U_{1y} M_{fy}}{M_{ry}} \le 1.0$ Check Cross-Sectional Strength From CSA G40.21 350W ASTM A992, A572 Grade 50 W Columns Factored Axial Compressive Resistances, Cr (kN) Page 4-37 of CISC Handbook of Steel Construction Cr = 11400 kN Mrx = 1800 kN-m 919 kN-m Mry = Calculating ω_1 (*Clause 13.8.5*) $\frac{M_{xxx1}}{M_{xxx1}} = 0.634737836 \text{ (Double Curvature)}$ $\frac{M_{YY1}}{M_{YY2}} = 0.626741 \text{ (Double Curvature)}$ From Table 4-6 of CISC Handbook of Steel Construction 0.4 ω1 = $\frac{KL_y}{r_y} =$ KL_{∞} 32.64 52.28 = r_x From Table 4-7, Interpolating $\frac{C_{e}}{A}$ Cē 1810 Mpa = 730 Mpa A 66246 kN Ce= Ce= 26718 kN From Table 4-8 $rac{C_{\overline{\gamma}}}{C_{\sigma}}$ $\frac{C_f}{C_e} =$ 0.03 0.07 U = 1.03 U = 1.08 U1x = ω1*U U1y = ω1*U 0.412 < 1.0 0.432 < 1.0 = = U1x = 1 1 U1v = $\frac{C_f}{C_r} + \frac{0.85 U_{1x} M_{fx}}{M_{rx}} + \frac{\beta U_{1y} M_{fy}}{M_{ry}} \leq 1.0$ β= 0.6 Therefore, Therefore Cross-Sectional Strength Check Does not Govern 0.655 < 1.0 Check Overall Member Strength KL_{x} $\frac{KL_y}{r_y} =$ 32.64 52.28 $r_{\rm x}$ From Table 4-4, Using the governing case for bending about the y-axis

$$\frac{E_{\rm F}}{A} = 246 \text{ Mpa}$$

$$Cr = 9003.6 \text{ kN}$$

$$\lambda_{\rm Y} = \frac{KL_{\rm Y}}{r_{\rm Y}} \sqrt{\frac{F_{\rm Y}}{E\pi^2}} = 0.696194$$

$$\beta = 0.6 + 0.4^{2}\lambda_{y} = 0.878478 > 0.85 \qquad \beta = 0.85$$

$$\frac{C_{f}}{C_{r}} + \frac{0.85U_{2x}M_{fx}}{M_{rx}} + \frac{\beta U_{2y}M_{fy}}{M_{ry}} \leq 1.0$$
0.702347519 < 1.0 Therefore, member strength ok
$$\frac{Check Lateral Torsional Buckling}{Cr = C_{ry} = Cr_{1}} = 9003.6 \text{ kN}$$
Since the unsupported column length L = 5385 mm is greater than the Lu = 5080 mm, we must interpolate the factored moment restance of columns (*CSA G40.21 350 W, page 4-118 of CISC Handbook of Steel Construction*)
Interpolating for find Mr.^{*} = 1800 kN-m
$$\frac{U1x = 1}{U1y = 1}$$

$$\beta = 0.85$$

$$\frac{C_{f}}{C_{rr}} + \frac{0.65U_{2x}M_{fx}}{M_{rx}} + \frac{\beta U_{2y}M_{fy}}{M_{ryx}} \leq 1.0$$
0.702347519 < 1.0 Therefore, torsional-lateral buckling does not govern
$$\frac{M_{rx}}{M_{rx}} + \frac{M_{ry}}{M_{ryx}} = 0.235 < 1.0$$

Column Desig	511			
Column Location	:	E-3		
Column Height:		4200 mm <u>5385</u> mm 9585 mm	Second Storey Colun First Storey Column I Total Column Height	Height
Column Tributary	Area:			
At =	79.66 m ²	M1	<u></u> M3	L1 = 5250 mm L2 = 4962.5 mm L3 = 3350 mm L4 = 4450 mm Only half the length of the connecting beam is required for the column tributary area.
Connecting Beam	Moments			
<u>1st Storey</u>			2nd Store	<u>؛۲</u>
M1 =	1601.93 kN-m	1	M1 =	1005.41 kN-m
M2 =	1490.76 kN-m	1	M2 =	935.60 kN-m
M3 =	126.25 kN-m	1	M3 =	75.19 kN-m
M4 =	222.78 kN-m	Ì	M4 =	132.68 kN-m
Resultant Momer	nts			
1st Storey			2nd Store	
Mx-x1 =	111.17 kN-m		Mx-x2 =	69.82 kN-m
Му-у1 =	96.53 kN-m	I	Му-у2 =	57.49 kN-m
	8.93 kPa 14.23 kPa 711.34 kN 1133.53 kN 1844.87 kN nuous througho	Compress Compress Total Com put the building.		oor Loads
Resultant Momen	nts on 1st storey	of column		
M _{x-x1} = M _{y-y1} =	111.17 kN-m 96.53 kN-m		Мх-х2 = Му-у2 =	180.99 kN-m 154.01 kN-m
Try <u>V</u>	W360x287			
Section Properties	ς			
b =	<u>s</u> 399 mm	d =	393 mm	
t =	36.6 mm	u = w =		
r _x =	165 mm	•• = ry =		
Lx =	5385 mm	A =	2	
<u>Check Section Cla</u> To use <i>Clause 13</i> .		ist meet the Clas	s 2 limit.	
l				
Flange:	<u>b</u>	5.45	< Class 2 limit = 9.09	

2t 14.15 < Class 2 limit = 65.4 Web: h w Section meets Class 2 requirements, therefore Clause 12.8.3 is applicable. $\frac{C_f}{C_r} + \frac{0.85 U_{1s}M_{fx}}{M_{rx}} + \frac{\beta U_{1y}M_{fy}}{M_{ry}} \le 1.0$ Check Cross-Sectional Strength From CSA G40.21 350W ASTM A992, A572 Grade 50 W Columns Factored Axial Compressive Resistances, Cr (kN) Page 4-37 of CISC Handbook of Steel Construction Cr = 11400 kN 1800 kN-m Mrx = Mry = 919 kN-m Calculating ω_1 (Clause 13.8.5) $\frac{M_{yyt}}{M_{yy2}} = 0.626741 \text{ (Double Curvature)}$ $rac{M_{xx1}}{M_{xxx2}}$ = 0.614245 (Double Curvature) From Table 4-6 of CISC Handbook of Steel Construction 0.4 ω1 = $\frac{KL_y}{r_y} =$ KL_{α} 32.64 52.28 = r_{x} From Table 4-7, Interpolating $\frac{C_{\sigma}}{A} =$ $\frac{C_o}{A} =$ 1279 Mpa 415 Mpa Ce = 46811.4 kN 15189 kN Ce = From Table 4-8 $\frac{C_f}{C_e} =$ $\frac{C_f}{C_o}$ = 0.04 0.12 $U = 1.1 \\ U_{1x} = \omega_{1*}U \\ = 0.44 < 1.0$ U = U = 1.37 U1y = ω1*U 0.548 < 1.0 = U1x = 1 U1y = 1 $\frac{C_f}{C_r} + \frac{0.85 U_{1x} M_{fx}}{M_{rx}} + \frac{\beta U_{1y} M_{fy}}{M_{ry}} \leq 1.0$ β= 0.6 Therefore, 0.348 < 1.0 Therefore Cross-Sectional Strength Check Does not Govern Check Overall Member Strength $KL_{N}=$ $\frac{KL_y}{r_y} = 52.28$ 32.64 r_x

From Table 4-4, Using the governing case for bending about the y-axis

$$\frac{C_{\gamma}}{A} = 246 \text{ Mpa}$$
Cr = 9003.6 kN
$$\lambda_{y} = \frac{KL_{y}}{r_{y}} \sqrt{\frac{F_{y}}{E\pi^{2}}} = 0.696194$$

$$\beta = 0.6 + 0.4^{*}\lambda = 0.878478 > 0.85 \qquad \beta = 0.85$$

$$\frac{G_{f}}{G_{r}} + \frac{0.85U_{LX}M_{fX}}{M_{rx}} + \frac{\beta U_{2X}M_{FY}}{M_{ry}} \le 1.0$$
0.432819 < 1.0 Therefore, member strength ok

Check Lateral Torsional Buckling
$$Cr = Cr_{1} = 9003.6 \text{ kN}$$
Since the unsupported column length L = 5385 mm is greater than the Lu = 5080 mm, we must interpolate the factored moment restance of columns (CSA G40.21 350 W, page 4-118 of CISC Handbook of Steel Construction)
Interpolating fo find Mn' = 652.3 kN-m

$$\frac{U1x = 1}{B_{\pi} = 0.85}$$

$$\frac{C_{f}}{C_{r}} + \frac{0.85U_{LX}M_{FX}}{M_{rx}} + \frac{\beta U_{2Y}M_{FY}}{M_{ry'}} \le 1.0$$
0.583197 < 1.0 Therefore, torsional-lateral buckling does not govern

Check Biaxial Bending

$$\frac{M_{FX}}{M_{rx}} + \frac{M_{FY}}{M_{ry}} = 0.235 < 1.0$$

Column Loc	ation :	E	-4					
Column Hei	olumn Height: 4200 mm Second Storey Column Height 5385 mm First Storey Column Height 9585 mm Total Column Height							
Column Trik	outary Are	ea:						
	At =	91.40 m ²	M1		M3	$ L_1 = 4450 \text{ mm} \\ L_2 = 4500 \text{ mm} \\ L_3 = 4963 \text{ mm} \\ L_4 = 5250 \text{ mm} \\ Only half the length of t connecting beam is require the column tributary area. $	he uired for	
Connecting	Beam Mo	oments						
<u>1st Storey</u>					2nd Storey			
M1 =		1216.37 kN-m			M1 =	765.20 kN-m		
M2 =		1246.19 kN-m			M2 =	782.49 kN-m		
M3 =		286.78 kN-m			M3 =	172.20 kN-m		
M4 =		320.91 kN-m			M4 =	192.69 kN-m		
Resultant N	Ioments							
incouncument					a 1.6.			
<u>1st Storey</u>					2nd Storey			
		29.82 kN-m			<u>2nd Storey</u> Mx-x2 =	17.29 kN-m		
<u>1st Storey</u> Mx-x1 = My-y1 =		29.82 kN-m 34.13 kN-m				17.29 kN-m 20.49 kN-m		
<u>1st Storey</u> Mx-x1 = My-y1 = <u>Compressiv</u> Tributary Ai	rea of Col calculated		Compress		Mx-x2 =	20.49 kN-m		
<u>1st Storey</u> Mx-x1 = My-y1 = <u>Compressiv</u> Tributary Al Previously c Roof Load =	rea of Colo calculated = Cf2 =	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN	Compress Compress	ive force ca	Mx-x2 = My-y2 =	20.49 kN-m Loads Loads		
<u>1st Storey</u> M _{x-x1} = M _{y-y1} = <u>Compressiv</u> Tributary An Previously c Roof Load = Floor Load = Column is	rea of Coli calculated = Cf2 = Cf1 = Cf = Cf =	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the	Compress Compress Total Com building. Lo	ive force can pressive fo adds are high	Mx-x2 = My-y2 = used by Roof used by Floo rce on Colum	20.49 kN-m Loads Loads	ed .	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously C Roof Load = Floor Load = Column is length in t	rea of Coli alculated = Cf2 = Cf1 = Cf = Cf =	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the	Compress Compress Total Com building. Lo ling. Begin de	ive force ca npressive fo ads are high	Mx-x2 = My-y2 = used by Roof used by Floo rce on Colum	20.49 kN-m Loads r Loads n n has a longer unsupporte	ed	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously c Roof Load = Floor Load = Column is length in t Resultant M	rea of Coli alculated = Cf2 = Cf1 = Cf = Cf =	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the storey of the build	Compress Compress Total Com building. Lo ling. Begin de	ive force ca npressive fo ads are high	Mx-x2 = My-y2 = used by Roof used by Floo rce on Colum rer and colum on lower stor	20.49 kN-m Loads r Loads n nn has a longer unsupporte rey part of column.	:d	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously C Roof Load = Floor Load = Floor Load = Resultant M M**1 =	rea of Coli alculated = Cf2 = Cf1 = Cf = Cf =	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the storey of the build on 1st storey of col 29.82 kN-m	Compress Compress Total Com building. Lo ling. Begin de	ive force ca npressive fo ads are high	Mx-x2 = My-y2 = used by Roof used by Floo rce on Colum on lower stor Mx-x2 =	20.49 kN-m Loads r Loads n in has a longer unsupporte rey part of column. 47.11 kN-m	:d	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously c Roof Load = Floor Load = Floor Load = Resultant M M**1 = My-y1 =	rea of Coli alculated = Cf2 = Cf1 = Cf = Cf = Cf =	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the storey of the build on 1st storey of col 29.82 kN-m 34.13 kN-m	Compress Compress Total Com building. Lo ling. Begin de	ive force ca npressive fo ads are high	Mx-x2 = My-y2 = used by Roof used by Floo rce on Colum rer and colum on lower stor	20.49 kN-m Loads r Loads n nn has a longer unsupporte rey part of column.	:d	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously c Roof Load = Floor Load = Floor Load = Resultant M M**1 = My-y1 = Try	rea of Coli alculated = Cf2 = Cf1 = Cf = Cf = 10ments c	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the storey of the build on 1st storey of col 29.82 kN-m	Compress Compress Total Com building. Lo ling. Begin de	ive force ca npressive fo ads are high	Mx-x2 = My-y2 = used by Roof used by Floo rce on Colum on lower stor Mx-x2 =	20.49 kN-m Loads r Loads n in has a longer unsupporte rey part of column. 47.11 kN-m	ed .	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously c Roof Load = Floor Load = Floor Load = Resultant M M**1 = My-y1 =	rea of Coli alculated = Cf2 = Cf1 = Cf = Cf = Cf = Noments c Noments c <u>W3</u> <u>perties</u>	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the storey of the build on 1st storey of col 29.82 kN-m 34.13 kN-m 60x287	Compress Compress Total Com building. Lo ling. Begin de umn	ive force ca	Mx-x2 = My-y2 = My-y2 = used by Rood used by Floo rce on Colum er and colum on lower stor Mx-x2 = My-y2 =	20.49 kN-m Loads r Loads n in has a longer unsupporte rey part of column. 47.11 kN-m	ed .	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously c Roof Load = Floor Load = Floor Load = Resultant M M**1 = My-y1 = Try	rea of Coli alculated = Cf2 = Cf1 = Cf = Cf = Cf = Noments c Noments c Noments c	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the storey of the build on 1st storey of col 29.82 kN-m 34.13 kN-m 60x287 399 mm	Compress Compress Total Com building. Lo ling. Begin de umn	ive force ca npressive fo ads are high esign based	Mx-x2 = My-y2 = My-y2 = My-y2 = Mx-x2 = My-y2 =	20.49 kN-m Loads r Loads n in has a longer unsupporte rey part of column. 47.11 kN-m	ed .	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously c Roof Load = Floor Load = Floor Load = Resultant M M**1 = My-y1 = Try	rea of Coli alculated = Cf2 = Cf1 = Cf = Cf = Cf = Noments c Noments c <u>W3</u> <u>perties</u>	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the storey of the build on 1st storey of col 29.82 kN-m 34.13 kN-m <u>60x287</u> 399 mm 36.6 mm	Compress Compress Total Com building. Lo ling. Begin de umn	ive force ca npressive fo ads are high esign based 393 22.6	Mx-x2 = My-y2 = My-y2 = My-y2 = Mx-x2 = My-y2 = B mm 5 mm	20.49 kN-m Loads r Loads n in has a longer unsupporte rey part of column. 47.11 kN-m	ed	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously c Roof Load = Floor Load = Floor Load = Resultant M M**1 = My-y1 = Try	rea of Coli alculated = Cf2 = Cf1 = Cf = Cf = Cf = Noments c Noments c Noments c	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the storey of the build on 1st storey of col 29.82 kN-m 34.13 kN-m 60x287 399 mm	Compress Compress Total Com building. Lo ling. Begin de umn	ive force ca npressive fo ads are high esign based second ads are high ads are high ads are high ads are high assed asse asse	$M_{x-x2} =$ $M_{y-y2} =$ $M_{y-y2} =$ $M_{x-x2} =$ $M_{x-x2} =$ $M_{y-y2} =$ $M_{y-y2} =$	20.49 kN-m Loads r Loads n in has a longer unsupporte rey part of column. 47.11 kN-m	ed	
<u>1st Storey</u> M**1 = My-y1 = <u>Compressiv</u> Tributary An Previously c Roof Load = Floor Load = Floor Load = Resultant M M**1 = My-y1 = Try	rea of Coli alculated cf2 = Cf2 = Cf1 = Cf = Cf = Cf = Moments c Moments c <u>W3</u> b = t =	34.13 kN-m umn x Floor or Roc loads include: 8.93 kPa 14.23 kPa 816.22 kN 1300.65 kN 2116.87 kN us throughout the storey of the build on 1st storey of col 29.82 kN-m 34.13 kN-m <u>60x287</u> 399 mm 36.6 mm	Compress Compress Total Com building. Lo ling. Begin de umn d = w =	ive force ca npressive fo ads are high esign based second ads are high ads are high ads are high ads are high assed asse asse	Mx-x2 = My-y2 = My-y2 = My-y2 = Mx-x2 = My-y2 = B mm 5 mm	20.49 kN-m Loads r Loads n in has a longer unsupporte rey part of column. 47.11 kN-m	ed	

<u>Check Section Class</u> To use *Clause 13.8.2* , column must meet the Class 2 limit.

Finage:

$$\frac{b}{2t}$$

$$5.45$$

$$< Class 2 limit = 9.09$$
Web:

$$\frac{b}{2t}$$

$$14.15$$

$$< Class 2 limit = 65.4$$
Section meets Class 2 requirements, therefore Clause 12.8.3 is applicable.

$$C_{T_{p}} + \frac{0.85U_{sw}M_{Fw}}{M_{eyv}} + \frac{\beta U_{sy}M_{FY}}{M_{eyy}} \leq 1.0$$
Check Cross-Sectional Strength
From CSA G40.21 350W ASTM A922, A572 Grade 50
W Columns Fourded Avid Compressive Resistances, Cr (kN)
Page 4-37 of CISC Handbook of Steel Construction

$$Cr = 11400 \text{ kN}$$

$$M_{m,e} = 1910 \text{ kN-m}$$
Calculating on (Clause 13.8.5)

$$\frac{M_{eye1}}{M_{eye2}} = 0.62282274 (Double Curvature)$$

$$\frac{M_{py21}}{M_{py22}} = 0.6247931 (Double Curvature)$$
From Table 4-5 of CISC Handbook of Steel Construction

$$\omega = 0.4$$

$$\frac{KL_w}{T_w} = 32.64$$

$$\frac{KL_w}{T_y} = 52.28$$
From Table 4-7, Interpolating

$$\frac{C_{e}}{A} = 1279 \text{ Mpa}$$

$$\frac{C_{e}}{T_{e}} = 0.14$$

$$\frac{C_{e}}{C_{e}} = 0.05$$

$$\frac{C_{f}}{C_{e}} = 0.14$$

$$\frac{C_{f}}{C_{e}} = 0.444 < 1.0$$

$$U_{17} = 0.14$$

$$\frac{C_{f}}{C_{e}} + \frac{0.85U_{12}M_{fry}}{M_{eyy}} \leq 1.0$$

$$\beta = 0.6$$
Therefore,

$$0.244 < 1.0$$
Therefore Cross-Sectional Strength Check Does not Govern
Check Overall Member Strength

$$\frac{KL_w}{T_w} = 32.64$$

$$\frac{KL_w}{T_y} = 52.28$$

From Table 4-4, Using the governing case for bending about the y-axis

$$\begin{aligned} Cr &= 9003.6 \text{ kN} \\ \lambda_{V} &= \frac{\kappa_{Ly}^{V}}{r_{Y}} \sqrt{\frac{E_{Y}}{D_{X}r^{2}}} &= 0.696194 \\ \beta &= 0.6 + 0.4^{*}\lambda_{V} &= 0.878478 > 0.85 \quad \beta &= 0.85 \\ \frac{C_{Y}}{C_{r}} + \frac{0.85U_{Lx}M_{Fx}}{M_{Fx}} + \frac{\beta U_{2y}M_{Fy}}{M_{Fy}} &\leq 1.0 \\ 0.30788129 < 1.0 \quad \text{Therefore, member strength ok} \end{aligned}$$

$$\begin{aligned} \text{Creek Lateral Torsional Buckling} \\ Cr &= C_{Y} = C_{x1} &= 9003.6 \text{ kN} \end{aligned}$$
Since the unsupported column length L = 5385 mm is greater than the Lu = 5080 mm, we must interpolate the factored moment restance of columns (CSA G40.21 350 W, page 4-118 of CISC Handbook of Steel Construction) \\ \text{Interpolating for find Mx' = 1800 kN-m} \\ UIx &= 1 \\ U1y &= 1 \\ \beta &= 0.85 \end{cases}
$$\begin{aligned} \frac{C_{f}}{C_{r}} + \frac{0.85U_{Lx}M_{Fx}}{M_{Fx}} + \frac{\beta U_{2y}M_{Fy}}{M_{Fy}} \leq 1.0 \\ 0.30788129 < 1.0 \quad \text{Therefore, torsional-lateral buckling does not govern} \end{aligned}$$

Column L	/esign							
Column Loca	ation :		E-5					
Column Heig	ght:		4200 mm 5385 mm 9585 mm		Second Storey Column Height First Storey Column Height Total Column Height			
Column Trib	utary A	rea:						
	At =	91.40 m ²	M1		M3	connecting b	5250 mm 4962.5 mm 4500 mm 4450 mm e length of the beam is required tributary area.	l for
Connecting	Beam N	<u>loments</u>						
<u>1st Storey</u>		4500 00 111			2nd Storey			
M1 =		1529.86 kN-n			M1 =	1047.14 kN		
M2 = M3 =		1367.01 kN-n 227.81 kN-n			M2 = M3 =	935.60 kN 135.68 kN		
IVI3 = M4 =		227.81 KN-n 222.78 kN-n			IVI3 = M4 =	135.68 kN 132.68 kN		
		222.70 NIN-11				132.00 KIN		
Resultant M	oments							
<u>1st Storey</u>					2nd Storey	=		
Mx-x1 =		162.84 kN-n			Mx-x2 =	111.55 kN		
Му-у1 =		5.03 kN-n	n		My-y2 =	3.00 kN	-m	
Roof Load = Floor Load = Column is	Cf2 = Cf1 = Cf =		Compres Compres Total Cor		used by Floo rce on Colur gher and col	or Loads nn umn has a long	er unsupported slumn.	
Resultant M	oments	on 1st storey o	of column					
Mx-x1 =		162.84 kN-n	n		Mx-x2 =	274.39 kN	-m	
My-y1 =		5.03 kN-n	n		My-y2 =	8.03 kN	-m	
Try	v	V360x287						
Section Prop	perties							
	b =	399 mm	d	= 393	3 mm			
	t =	36.6 mm	w	= 22.6	5 mm			
	r _x =	165 mm	ry	= 103	3 mm			
	Lx =	5385 mm	А	= 36600) mm²			
<u>Check Sectic</u> To use <i>Claus</i>			t meet the Class	2 limit.				
Flange:		<u>b</u>	5.45	< Class 2 l	imit = 9.09			
-		—						

$$\begin{array}{c} 2t\\ \text{Web:} & \underline{h} & 14.15 & <\text{Class 2 limit = 65.4}\\ & w \end{array}$$
Section meets Class 2 requirements, therefore *Clause 12.8.3* is applicable.
$$\begin{array}{c} C_{f}\\ C_{r} \end{array} + \frac{0.85 U_{1x} M_{fx}}{M_{rx}} + \frac{\beta U_{1y} M_{fy}}{M_{ry}} \leq 1.0 \end{array}$$

<u>Check Cross-Sectional Strength</u> From CSA G40.21 350W ASTM A992, A572 Grade 50 W Columns Factored Axial Compressive Resistances, Cr (kN) Page 4-37 of CISC Handbook of Steel Construction

> Cr = 11400 kN Mrx = 1800 kN-m Mry = 919 kN-m

Calculating ω_1 (*Clause 13.8.5*) $\frac{M_{x \approx 1}}{M_{x \approx 2}} = 0.593476$ (Double Curvature) $\frac{M_{y \gg 1}}{M_{y \gg 2}} = 0.626741$ (Double Curvature)

From Table 4-6 of CISC Handbook of Steel Construction

ω1 = 0.4

 $\frac{KL_{\infty}}{r_{\infty}} = 32.64 \qquad \frac{KL_{y}}{r_{y}} = 52.28$

From Table 4-7, Interpolating

$$\frac{C_{\sigma}}{A}$$
 = 1279 Mpa $\frac{C_{\sigma}}{A}$ = 415 Mpa

From Table 4-8

$$\begin{array}{rcl} \frac{C_{f}}{C_{\sigma}} &=& 0.05 & & \frac{C_{f}}{C_{\sigma}} &=& 0.14 \\ \\ & & U &=& 1.11 & & U &=& 1.45 \\ & & U_{1x} &=& \omega_{1} * U & & & U_{1y} &=& \omega_{1} * U \\ & & =& 0.444 < 1.0 & & & =& 0.58 < 1.0 \\ & & & U_{1x} &=& 1 & & U_{1y} &=& 1 \end{array}$$

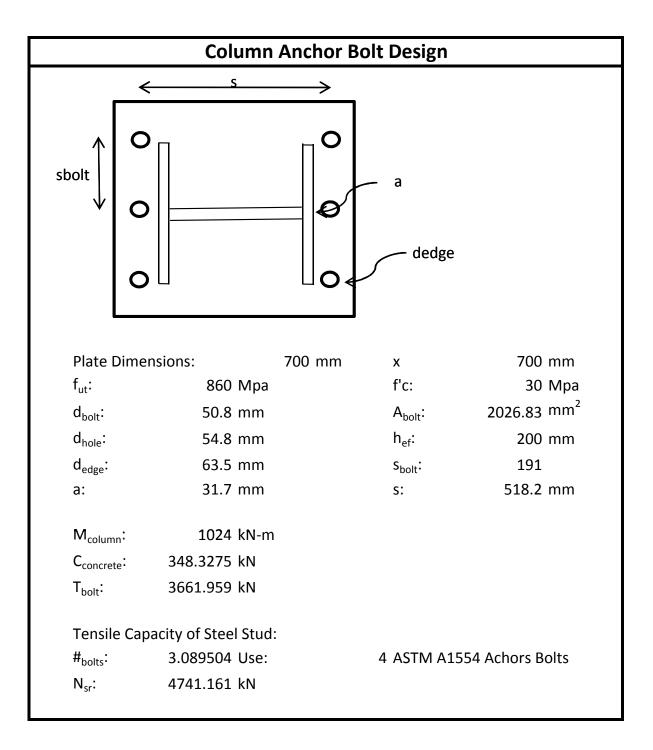
Therefore,

0.321 < 1.0 Therefore Cross-Sectional Strength Check Does not Govern

Check Overall Member Strength

$$\frac{KL_{w}}{r_{w}} = 32.64 \qquad \frac{KL_{w}}{r_{w}} = 52.28$$

From Table 4-4, Using the governing case for bending about the y-axis


$$\frac{C_{y}}{A} = 246 \text{ Mpa}$$

$$Cr = 9003.6 \text{ kN}$$

$$\lambda_{y} = \frac{KL_{y}}{r_{y}} \sqrt{\frac{F_{y}}{E\pi^{2}}} = 0.696194$$

$$\begin{aligned} \beta = 0.6 + 0.4^*\lambda &= 0.878478 > 0.85 \qquad \beta = 0.85 \\ \frac{C_{f}}{C_{r}} + \frac{0.85U_{1x}M_{fx}}{M_{rx}} + \frac{\beta U_{1y}M_{fy}}{M_{ry}} \leq 1.0 \\ 0.372117 < 1.0 \qquad \text{Therefore, member strength ok} \end{aligned}$$
Check Lateral Torsional Buckling
$$Cr = C_{ry} = C_{t1} = 9003.6 \text{ kN}$$
Since the unsupported column length L = 5385 mm is greater than the Lu = 5080 mm, we must interpolate the factored moment restance of columns (*CSA G40.21 350 W, page 4-118 of CISC Handbook of Steel Construction*)
Interpolating fo find Mrs' = 1800 kN-m
$$\begin{aligned} U1x = 1 \\ U1y = 1 \\ \beta = 0.85 \end{aligned}$$

$$\frac{C_{f}}{C_{r}} \leftarrow \frac{0.85U_{1x}M_{fx}}{M_{ryx}} + \frac{\beta U_{2y}M_{fy}}{M_{ryy}} \leq 1.0 \\ 0.372117 < 1.0 \qquad \text{Therefore, torsional-lateral buckling does not govern} \end{aligned}$$

	of Girder	Beam	Desig	1	
С				_	
\rightarrow \leftarrow w	Mf = <u>375.3</u> kM Vf = <u>224.1 kM</u> Fy = <u>350 M</u> L = <u>6700 m</u>	N G = pa w =	200 Gpa 77000 Mpa 66.88 kN/m 23 kN/m	Weight =	8.777 kM
<>	Mr = фZxFy	→ Zx =	1191.429 x 10^3	mm^3	
From Zx choose Section:	W410 X 13	2			
Properties: Please e	nter dimensions below				
d = $\frac{425 \text{ mm}}{263 \text{ mm}}$ b = $\frac{263 \text{ mm}}{6.74\text{E}+07 \text{ mm}^4}$ ly = $5.45\text{E}+08 \text{ mm}^4$	t = w = Cw =	22.2 mm 13.3 mm 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 2.56E+06 2.41E+06	mm^3
Classification of Section:					
b/t = 5.923423	Flange is Class 1				
h/w = 28.61654	Flange is Class 1				
Assuming that there is no axial	loading Cf = 0				
This section is a Class 1 Moment Capacity:	loading Cf = 0	Shear Capa	city:		
This section is a Class 1 Moment Capacity:	loading Cf = 0			5.34	
This section is a Class 1 Moment Capacity: ¢ZFy	loading Cf = 0 35 kNm		g No Stiffners: kv =	5.34 1 Mpa	
This section is a Class 1 <u>Moment Capacity:</u> ϕ ZFy Mr = or 910.		**Assuming	g No Stiffners: kv =	1 Mpa	Shear OK
This section is a Class 1 <u>Moment Capacity:</u> ϕ ZFy Mr = or 910.		**Assuming Fs = 0.66Fy Vs = <u>Deflection 0</u>	g No Stiffners: kv = = 231 1175 <u>Check:</u>	1 Mpa	
This section is a Class 1 <u>Moment Capacity:</u> ϕ ZFy Mr = or 910. ϕ SFy		**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN	1 Mpa	
This section is a Class 1 <u>Moment Capacity:</u> ϕ ZFy Mr = or 910. ϕ SFy <u>Lateral Buckling Check:</u>		**Assuming Fs = 0.66Fy Vs = <u>Deflection 0</u> # of Loads	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN 1.34 m	1 Mpa	
This section is a Class 1 <u>Moment Capacity:</u>		**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN	1 Mpa	
This section is a Class 1 Moment Capacity: ϕ ZFy Mr = ϕ ZFy ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP		**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm 0.00 mm	1 Mpa	
This section is a Class 1 Moment Capacity: ϕ ZFy Mr = or ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP Mp = 1011.5 kNm Characteristic Length	35 kNm	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm	1 Mpa	
This section is a Class 1Moment Capacity: $Mr = \begin{tabular}{lllllllllllllllllllllllllllllllllll$	35 kNm	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm 0.00 mm 19.47 mm	1 Mpa	
This section is a Class 1Moment Capacity: $Mr = \begin{tabular}{lllllllllllllllllllllllllllllllllll$	35 kNm 06 λ + -7.26E+07	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 231 1175 <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm 0.00 mm 19.47 mm 27.92 mm	1 Mpa	
This section is a Class 1Moment Capacity:Mr = ϕZFy or or ϕSFy 910.Lateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp =1011.5 kNmCharacteristic Length Mu = 2.1467Mp477721.5 λ^2 +-2.50E+ λ =15.22or	35 kNm 06 λ + -7.26E+07 -9.99 677.7	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 231 1175 <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm 0.00 mm 19.47 mm 27.92 mm	1 Mpa	

Roof	Girder	^r Beam	Desig	gn	
dline: C			_		
e: 3-4					
	= <u>309.98</u> = <u>350</u>	kN G = Mpa w =	200 Gpa 77000 Mpa 69.66 kN/m 19.16 kN/m 2189.492 x 10^3	Weight = mm^3	11.659 kN
b From Zx choose Section:	W410 X 1	32			
Properties: Please enter of	imensions below				
$d = \frac{425 \text{ mm}}{263 \text{ mm}}$ $b = \frac{263 \text{ mm}}{19 = \frac{6.74\text{E}+07}{110000000000000000000000000000000000$	t = w = Cw =	22.2 mm 13.3 mm 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 2.56E+06 2.41E+06	mm^3
Classification of Section:					
	ngo is Class 1				
b/t = 5.923423 Fla	nge is Class 1				
h/w = 28.61654 Fla	nge is Class 1				
Assuming that there is no axial loadi	ng Cf = 0				
This section is a Class 1					
Mamont Conseitu		Sheer Con	o citrur		
Moment Capacity:		<u>Shear Cap</u>			
φΖϜγ Mr = or 910.35 kN	m	**Assumir	ng No Stiffners: kv =	5.34	
φSFy		Fs = 0.66Fy	/ =	231 Mpa	
		Vs =	1	175 kN	Shear OK
Lateral Buckling Check:		Deflection	Check:		
		# of Loads	5		
Doubly Symmetric Class 1 or 2		P = Spacing =	123.99 kN 1.483 m		
**Assuming Mu > 0.67MP		A (D1 · D5)	16.00		
Mp = 1011.5 kNm		Δ (P1+P5) = Δ (P2+P4) = Δ (P3) =	28.46 mm	1	
Characteristic Length Mu = 2.1467Mp					
Wu - 2.140/Wp		Δ =	61.25 mm		
477721.5 λ^2 + -2.50Ε+06 λ +	-7.26E+07	Δmax =	37.08 mm		
λ = 15.22 or L = 3902 mm	-9.99	Max D	eflection Exceeded		
Mu = 2171.4 Assumption Correct: Mu >	677.7 • 0.67Mp				

Ro	of Girde	er Bean	n Desig	'n	
line: C e: 4-5					
\rightarrow \leftarrow w	Vf = 313.5 Fy = 35	3 kNm E = $3 kN$ G = $0 Mpa$ w = $0 mm$ wll =	200 Gpa 77000 Mpa 69.67 kN/m 19.17 kN/m	Weight =	11.79 kl
	Mr = φZxFy —	→ Zx =	2239.46 x 10^3	mm^3	
↓ →	Assumption OK				
b From Zx choose Section:	W410 X	(132			
Properties: Plea	se enter dimensions belo	w			
d = <u>425</u> mm b = <u>263</u> mm ly = <u>6.74E+07</u> mm ⁴ lx = 5.45E+08 mm ⁴		22.2 mm 13.3 mm 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 r 2.56E+06 r 2.41E+06 r	mm^3
Classification of Section:					
b/t = 5.923423	Flange is Class 1				
h/w = 28.61654	Flange is Class 1				
This section is a Class 1 Moment Capacity:		<u>Shear Cap</u>	acity:		
φZFy Mr = or	910.35 kNm	**Assumi	ng No Stiffners: kv =	5.34	
фSFy		Fs = 0.66F	y = 23	1 Mpa	
		Vs =	117	′5 kN 5	Shear OK
Lateral Buckling Check:		Deflection			
Doubly Symmetric Class 1	or 2	# of Loads P =	5 125.41 kN		
**Assuming Mu > 0.67MP		Spacing =	1.5 m		
Mp = 1011.5 kNm	1	Δ (P1+P5) = Δ (P2+P4) = Δ (P3) =	29.77 mm		
Characteristic Length Mu = 2.1467Mp		A _	64.07		
	2.50E+06 λ + -7.26E+0	Δ = 7 Δmax =	64.07 mm 37.50 mm		
477721.5 λ^2 + -2					
477721.5 λ^{2} + -2 λ = 15.22 L = 3902 mm	or -9.99	Max D	eflection Exceeded		
λ = 15.22	677.7	Max D	eflection Exceeded		

	eam	Desig	n	
c		U		
$ \begin{array}{c} & \psi \\ \uparrow t \\ & Vf = \\ & Fy = \\ & & 350 \\ & & Fy = \\ & & & 8900 \\ \end{array} $	E = G = w = wII =	200 Gpa 77000 Mpa 69.66 kN/m 19.16 kN/m	Weight =	11.659 k
Mr = φZxFy Assumption OK	→ Zx =	2189.492 x 10^3	mm^3	
From Zx choose Section: W410 X 132				
Properties: Please enter dimensions below				
b = 263 mm w = 2	22.2 mm 13.3 mm +12 mm^6	Zx = Sx = J =	2.89E+06 2.56E+06 2.41E+06	mm^3
Classification of Section:				
b/t = 5.923423 Flange is Class 1				
h/w = 28.61654 Flange is Class 1				
Assuming that there is no axial loading Cf = 0				
Assuming that there is no axial loading Cf = 0 This section is a Class 1 Moment Capacity:	Shear Capa	city:		
This section is a Class 1		<u>city:</u> g No Stiffners: kv =	5.34	
This section is a Class 1 <u>Moment Capacity:</u>		g No Stiffners: kv =	5.34 31 Mpa	
This section is a Class 1 Moment Capacity: ϕ ZFy Mr = or 910.35 kNm	**Assuminį	g No Stiffners: kv = = 23	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: ϕ ZFy Mr = or 910.35 kNm	**Assuming Fs = 0.66Fy	g No Stiffners: kv = = 2: 117	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity:	**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P = Spacing =	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: $Mr = \qquad \phi ZFy \\ Mr = \qquad or \qquad 910.35 \text{ kNm} \\ \phi SFy \\ \hline$ Lateral Buckling Check: Doubly Symmetric Class 1 or 2	**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P =	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: Mr = ϕ ZFy Mr = or 910.35 kNm ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } 0}{\text{# of Loads}}$ P = Spacing = $\Delta (P1+P5) =$ $\Delta (P2+P4) =$ $\Delta (P3) =$	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm 16.71 mm	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: $Mr = \begin{array}{c} \phi ZFy \\ or \\ \phi SFy \end{array}$ Lateral Buckling Check: Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP Mp = 1011.5 kNm Characteristic Length	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } 0}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) =	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: $Mr =$ ϕ ZFy $provestimes relation on the second $	**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm 16.71 mm 61.25 mm	31 Mpa	Shear OK
This section is a Class 1Moment Capacity: $Mr = \begin{array}{c} \phi ZFy \\ or \\ or \\ 910.35 \ kNm \end{array}$ Lateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp = 1011.5 \ kNm \\Characteristic Length Mu = 2.1467Mp 477721.5 λ^2 + -2.50E+06 λ + -7.26E+07 λ = 15.22 or -9.99	**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 2: <u>5</u> 117 <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm 16.71 mm 61.25 mm 37.08 mm	31 Mpa	Shear OK

Roof Gir	rder Bean	n Desig	n
lline: E			
2: 2-3			
$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & $	409.37 kNm E = 244.4 kN G = 350 Mpa w = 6700 mm wll =	200 Gpa 77000 Mpa 72.96 kN/m 23 kN/m	Weight = 8.777 k
Mr = φZxFy Assumption ←b		1299.587 x 10^3	mm^3
From Zx choose Section:	410 X 132		
Properties: Please enter dimension	ns below		
b = <u>263</u> mm	t = 22.2 mm w = 13.3 mm Cw = 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 mm^3 2.56E+06 mm^3 2.41E+06 mm^4
Classification of Section:			
b/t = 5.923423 Flange is Cla	ass 1		
h/w = 28.61654 Flange is Cla	ass 1		
Assuming that there is no axial loading Cf = 0 This section is a Class 1 <u>Moment Capacity:</u>	<u>Shear Ca</u>	apacity:	
φΖFy Mr = or 910.35 kNm φSFy	**Assun Fs = 0.66	ning No Stiffners: kv =	5.34 1 Mpa
ψory	Vs =		5 kN Shear OK
Lateral Buckling Check: Doubly Symmetric Class 1 or 2		on Check:	
**Assuming Mu > 0.67MP	Spacing	= 1.34 m	
Mp = 1011.5 kNm	Δ (P1+P5 Δ (P2+P4 Δ (P3) = 13.26 mm	
Characteristic Length Mu = 2.1467Mp	Δ =	21.24 mm	
477721.5 λ^2 + -2.50Ε+06 λ +	-7.26E+07 Δmax =	27.92 mm	
λ = 15.22 or -9.9 L = 3902 mm	99 <u>Defle</u>	ctions are Acceptable	
Mu = 2171.4 677.7 Assumption Correct: Mu > 0.67Mp			

E			Deam	Desi	5''	
\rightarrow	, w	Mf = 752.33 kN Vf = 338.13 kN Fy = 350 Mp L = 8900 mm	G = a w =	200 Gpa 77000 Mpa 75.98 kN/m 19.16 kN/m	Weight =	= 11.659 k
		Mr = фZxFy	→ Zx =	2388.349 x 10^3	8 mm^3	
<i>←</i>	b >					
From Zx c	hoose Section:	W410 X 132	2			
Properties	<u>s:</u> Please e	enter dimensions below				
d = b = Iy = Ix =	425 mm 263 mm 6.74E+07 mm^4 5.45E+08 mm^4	t = w = Cw = 2.1	22.2 mm 13.3 mm 73E+12 mm^6	Zx = Sx = J =	2.56E+0	06 mm^3 06 mm^3 06 mm^4
<u>Classificat</u>	tion of Section:					
b/t =	5.923423	Flange is Class 1				
h/w =	28.61654	Flange is Class 1				
Assuming	that there is no axial	l loading Cf = 0				
-	that there is no axial	l loading Cf = 0				
This section	on is a Class 1	l loading Cf = 0				
-	on is a Class 1	l loading Cf = 0	<u>Shear Capa</u>	acity:		
This section	on is a Class 1 <u>Capacity:</u> φΖFy	I loading Cf = 0 35 kNm		acity: g No Stiffners: kv =	= 5.3	34
This section	on is a Class 1 <u>Capacity:</u> φΖFy	_		g No Stiffners: kv :	= 5.3 231 Mpa	34
This section	on is a Class 1 <u>Capacity:</u>	_	**Assumin	g No Stiffners: kv = r =		34 Shear OK
This section Moment (Mr =	on is a Class 1 <u>Capacity:</u> φZFy or 910. φSFy uckling Check:	35 kNm	**Assumin Fs = 0.66Fy Vs = <u>Deflection</u> # of Loads	g No Stiffners: kv = r = <u>Check:</u> 5	231 Mpa	
This section <u>Moment (</u> Mr = <u>Lateral Bu</u> Doubly Sy	on is a Class 1 <u>Capacity:</u> φΖFy or 910. φSFy	35 kNm	**Assumin Fs = 0.66Fy Vs = <u>Deflection</u>	g No Stiffners: kv = r = <u>1</u> <u>Check:</u>	231 Mpa	
This section <u>Moment (</u> Mr = <u>Lateral Bu</u> Doubly Sy	on is a Class 1 Capacity: φZFy or 910. φSFy uckling Check: mmetric Class 1 or 2	35 kNm	**Assumin Fs = 0.66Fy Vs = <u>Deflection</u> # of Loads P =	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm	231 Mpa L175 kN	
This section Moment (Mr = Lateral Bu Doubly Sy **Assumi Mp =	on is a Class 1 Capacity: φZFy or 910. φSFy uckling Check: mmetric Class 1 or 2 ng Mu > 0.67MP 1011.5 kNm istic Length	35 kNm	**Assumin Fs = 0.66Fy Vs = Deflection # of Loads P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) =	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm 18.22 mn	231 Mpa L175 kN	
This section Moment (Mr = Lateral Bu Doubly Sy **Assumi Mp = Character	on is a Class 1 Capacity: φZFy or 910. φSFy uckling Check: mmetric Class 1 or 2 ng Mu > 0.67MP 1011.5 kNm istic Length i67Mp	35 kNm	**Assumin Fs = 0.66Fy Vs = Deflection # of Loads P = Spacing = Δ (P1+P5) = Δ (P2+P4) =	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm	231 Mpa L175 kN	
This section Moment (Mr = Lateral Bu Doubly Sy **Assumi Mp = Character Mu = 2.14	on is a Class 1 Capacity: φZFy or 910. φSFy uckling Check: mmetric Class 1 or 2 ng Mu > 0.67MP 1011.5 kNm istic Length i67Mp	35 kNm	**Assumin Fs = 0.66Fy Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = $\Delta (P1+P5) =$ $\Delta (P2+P4) =$ $\Delta (P3) =$ $\Delta =$ $\Delta max =$	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm 18.22 mn 66.81 mm	231 Mpa <u>L175 kN</u> n	
This section Moment (Mr = Lateral Bu Doubly Sy **Assumi Mp = Character Mu = 2.14 477721.5 λ =	$\frac{\text{Capacity:}}{\phi ZFy} \qquad 910.$ $\frac{\phi ZFy}{\phi SFy} \qquad 910.$ $\frac{\phi SFy}{\phi SFy} \qquad 910.$	35 kNm 06 λ + -7.26E+07 -9.99 677.7	**Assumin Fs = 0.66Fy Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = $\Delta (P1+P5) =$ $\Delta (P2+P4) =$ $\Delta (P3) =$ $\Delta =$ $\Delta max =$	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm 18.22 mn 66.81 mm 37.08 mm	231 Mpa <u>L175 kN</u> n	

\rightarrow \leftarrow w	Mf = <u>769.44</u> kNm Vf = <u>341.98</u> kN Fy = 350 Mpa L = <u>9000</u> mm Mr = ϕ ZxFy Assumption OK	G = 77 w = 7 wll = 1	200 Gpa 7000 Mpa 5.99 kN/m 9.17 kN/m .667 x 10^3	Weight = mm^3	11.79
b From Zx choose Section:	W410 X 132				
Properties: Please	enter dimensions below				
d = 425 mm b = 263 mm ly = 6.74E+07 mm^4 lx = 5.45E+08 mm^4		22.2 mm 13.3 mm E+12 mm^6	Zx = Sx = J =	2.89E+06 r 2.56E+06 r 2.41E+06 r	mm^3
Classification of Section:					
b/t = 5.923423	Flange is Class 1				
h/w = 28.61654	Flange is Class 1				
Assuming that there is no axis	al loading Cf = 0				
This section is a Class 1					
This section is a Class 1 Moment Capacity:		<u>Shear Capacity:</u>			
<u>Moment Capacity:</u> ¢ZFy) 35 kNm	<u>Shear Capacity:</u> **Assuming No S	tiffners: kv =	5.34	
<u>Moment Capacity:</u> φΖFy	0.35 kNm			5.34 . Mpa	
Moment Capacity:	0.35 kNm	**Assuming No S		Мра	Shear OK
<u>Moment Capacity:</u> φZFy Mr = or 910 φSFy <u>Lateral Buckling Check:</u> Doubly Symmetric Class 1 or 2		**Assuming No S Fs = 0.66Fy = Vs = <u>Deflection Check:</u> # of Loads	231 1175	Мра	Shear OK
Moment Capacity: ϕ ZFyMr =or ϕ SFy		**Assuming No S Fs = 0.66Fy = Vs = Deflection Check: # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3	231 1175 5 6.79 kN	Мра	Shear OK
<u>Moment Capacity:</u> φZFy Mr = or 910 φSFy <u>Lateral Buckling Check:</u> Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP		**Assuming No S Fs = 0.66Fy = Vs = Deflection Check: # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3 Δ (P3) = 1	231 1175 5 6.79 kN 1.5 m 8.35 mm 2.47 mm 9.06 mm	Мра	Shear OK
Moment Capacity: ϕ ZFy Mr = or 910 ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 3 **Assuming Mu > 0.67MP Mp = 1011.5 kNm Characteristic Length Mu = 2.1467Mp		**Assuming No S Fs = 0.66Fy = Vs = Deflection Check: # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3 Δ (P3) = 1 Δ = 6	231 1175 5 6.79 kN 1.5 m 8.35 mm 2.47 mm	Мра	Shear OK
Moment Capacity: ϕ ZFy Mr = or 910 ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 3 **Assuming Mu > 0.67MP Mp = 1011.5 kNm Characteristic Length Mu = 2.1467Mp	2 +06 λ + -7.26E+07	**Assuming No S Fs = 0.66Fy = Vs = Deflection Check: # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3 Δ (P3) = 1 Δ = 6	231 1175 5 6.79 kN 1.5 m 8.35 mm 2.47 mm 9.06 mm 9.89 mm 7.50 mm	Мра	Shear OK
Moment Capacity: $\[\begin{smallmatrix} \phi ZFy \\ Mr = or 910 \\ \phi SFy \end{smallmatrix}$ Lateral Buckling Check:Doubly Symmetric Class 1 or 1**Assuming Mu > 0.67MPMp = 1011.5 kNmCharacteristic Length Mu = 2.1467Mp477721.5 λ^2 + -2.50E λ = 15.22 or	2 +06 λ + -7.26E+07 -9.99 677.7	**Assuming No S Fs = 0.66Fy = Vs = <u>Deflection Check</u> : # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3 Δ (P3) = 1 $\Delta = 6$ Δ max = 3	231 1175 5 6.79 kN 1.5 m 8.35 mm 2.47 mm 9.06 mm 9.89 mm 7.50 mm	Мра	Shear OK

	of Girder	. Beam	Desig	n	
:: E 7					
, ↓ t ↓ t w	Mf = 752.33 Vf = 338.13 Fy = 350 L = 8900 Mr = φZxFy	kN G = Mpa w =	200 Gpa 77000 Mpa 75.98 kN/m 19.16 kN/m 2388.349 x 10^3	Weight = mm^3	11.659 k
From Zx choose Section:	Assumption OK W410 X 1	32			
Properties: Please	enter dimensions below				
d = <u>425</u> mm b = <u>263</u> mm ly = <u>6.74E+07</u> mm^4 lx = <u>5.45E+08</u> mm^4	t = w = Cw =	22.2 mm 13.3 mm 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 2.56E+06 2.41E+06	mm^3
Classification of Section:					
b/t = 5.923423	Flange is Class 1				
h/w = 28.61654	Flange is Class 1				
This section is a Class 1 Moment Capacity:		<u>Shear Cap</u>	acity:		
<u>Moment Capacity:</u> ¢ZFy	0.35 kNm		ng No Stiffners: kv =	5.34 31 Mpa	
<u>Moment Capacity:</u> ¢ZFy Mr = or 910	0.35 kNm	**Assumir	ng No Stiffners: kv = y = 2	31 Mpa	Shear OK
<u>Moment Capacity:</u> ¢ZFy Mr = or 910		**Assumir Fs = 0.66F	ng No Stiffners: kv = y = 2 11 <u>Check:</u>	31 Mpa	Shear OK
<u>Moment Capacity:</u> φZFy Mr = or 910 φSFy Lateral Buckling Check:		**Assumir Fs = 0.66Fv Vs = <u>Deflection</u> # of Loads P =	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 5 135.25 kN 1.483 m	31 Mpa	Shear OK
Moment Capacity: ϕ ZFyMr =or910 ϕ SFyLateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp =1011.5 kNm		**Assumin Fs = 0.66Fv Vs = <u>Deflection</u> # of Loads P = Spacing =	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm	31 Mpa	Shear OK
<u>Moment Capacity:</u> φZFy Mr = or 910 φSFy <u>Lateral Buckling Check:</u> Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP		**Assumin Fs = 0.66Fv Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = $\Delta (P1+P5) =$ $\Delta (P2+P4) =$ $\Delta (P3) =$	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 17.55 mm 18.22 mm	31 Mpa	Shear OK
Moment Capacity: ϕ ZFyMr =or910 ϕ SFy		**Assumin Fs = 0.66Fv Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) =	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm	31 Mpa	Shear OK
Moment Capacity: ϕ ZFyMr =or910 ϕ SFy	2 +06 λ + -7.26E+07	**Assumin Fs = 0.66Fv Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 17.55 mm 18.22 mm 66.81 mm	31 Mpa	Shear OK
Moment Capacity: ϕ ZFyMr =or910 ϕ SFyLateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp =1011.5 kNmCharacteristic LengthMu = 2.1467Mp477721.5 λ^2 +-2.50E λ =15.22or	2 +06 λ + -7.26E+07 -9.99 677.7	**Assumin Fs = 0.66Fv Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	ng No Stiffners: kv = y = 2 <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 17.55 mm 18.22 mm 66.81 mm 37.08 mm	31 Mpa	Shear OK

Roof Girders

Beam	Joist Spacing (m)	Beam Length (m)	Joist Loads (kN)	# of Point Loads	Linear Load per Beam (kN/m)	Linear Live Load per Beam (kN/m)	Max. Shear (kN)	Max. Moment (kN)
C 2-3	1.34	6.7	112.03	4	66.88	23.00	224.06	375.30
C 3-4	1.483	8.9	123.99	5	69.66	19.16	309.98	689.69
C 4-5	1.5	9	125.41	5	69.67	19.17	313.53	705.43
C 5-7	1.483	8.9	123.99	5	69.66	19.16	309.98	689.69
E 2-3	1.34	6.7	122.2	4	72.96	23.00	244.40	409.37
E 3-4	1.483	8.9	135.25	5	75.98	19.16	338.13	752.33
E 4-5	1.5	9	136.79	5	75.99	19.17	341.98	769.44
E 5-7	1.483	8.9	135.25	5	75.98	19.16	338.13	752.33

Floor Girders

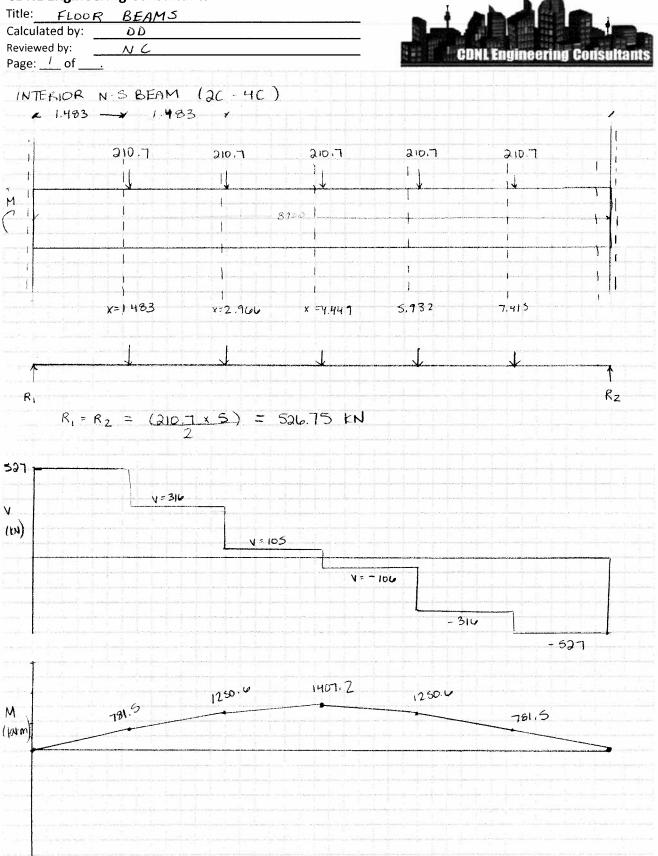
Beam	Joist Spacing (m)	Beam Length (m)	Joist Loads (kN)	# of Point Loads	Linear Load per Beam (kN/m)	Linear Live Load per Beam (kN/m)	Max. Shear (kN)	Max. Moment (kN)
C 2-3	1.34	6.7	178.5	4	106.57	72.00	357.00	597.98
C 3-4	1.483	8.9	197.6	5	111.01	59.99	494.00	1099.15
C 4-5	1.5	9	199.84	5	111.02	60.00	499.60	1124.10
C 5-7	1.483	8.9	197.6	5	111.01	59.99	494.00	1099.15
E 2-3	1.34	6.7	194.7	4	116.24	72.00	389.40	652.25
E 3-4	1.483	8.9	215.5	5	121.07	59.99	538.75	1198.72
E 4-5	1.5	9	218	5	121.11	60.00	545.00	1226.25
E 5-7	1.483	8.9	215.5	5	121.07	59.99	538.75	1198.72

	of Girder	Beam	Desig	1	
С				_	
\rightarrow \leftarrow w	Mf = <u>375.3</u> kM Vf = <u>224.1 kM</u> Fy = <u>350 M</u> L = <u>6700 m</u>	N G = pa w =	200 Gpa 77000 Mpa 66.88 kN/m 23 kN/m	Weight =	8.777 kM
<>	Mr = фZxFy	→ Zx =	1191.429 x 10^3	mm^3	
From Zx choose Section:	W410 X 13	2			
Properties: Please e	nter dimensions below				
d = $\frac{425 \text{ mm}}{263 \text{ mm}}$ b = $\frac{263 \text{ mm}}{6.74\text{E}+07 \text{ mm}^4}$ ly = $5.45\text{E}+08 \text{ mm}^4$	t = w = Cw =	22.2 mm 13.3 mm 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 2.56E+06 2.41E+06	mm^3
Classification of Section:					
b/t = 5.923423	Flange is Class 1				
h/w = 28.61654	Flange is Class 1				
Assuming that there is no axial	loading Cf = 0				
This section is a Class 1 Moment Capacity:	loading Cf = 0	Shear Capa	city:		
This section is a Class 1 Moment Capacity:	loading Cf = 0			5.34	
This section is a Class 1 Moment Capacity: ¢ZFy	loading Cf = 0 35 kNm		g No Stiffners: kv =	5.34 1 Mpa	
This section is a Class 1 <u>Moment Capacity:</u> ϕ ZFy Mr = or 910.		**Assuming	g No Stiffners: kv =	1 Mpa	Shear OK
This section is a Class 1 <u>Moment Capacity:</u> ϕ ZFy Mr = or 910.		**Assuming Fs = 0.66Fy Vs = <u>Deflection 0</u>	g No Stiffners: kv = = 231 1175 <u>Check:</u>	1 Mpa	
This section is a Class 1 <u>Moment Capacity:</u> ϕ ZFy Mr = or 910. ϕ SFy		**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN	1 Mpa	
This section is a Class 1 <u>Moment Capacity:</u> ϕ ZFy Mr = or 910. ϕ SFy <u>Lateral Buckling Check:</u>		**Assuming Fs = 0.66Fy Vs = <u>Deflection 0</u> # of Loads	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN 1.34 m	1 Mpa	
This section is a Class 1 <u>Moment Capacity:</u>		**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN	1 Mpa	
This section is a Class 1 Moment Capacity: ϕ ZFy Mr = ϕ ZFy ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP		**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm 0.00 mm	1 Mpa	
This section is a Class 1 Moment Capacity: ϕ ZFy Mr = or ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP Mp = 1011.5 kNm Characteristic Length	35 kNm	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm	1 Mpa	
This section is a Class 1Moment Capacity: $Mr = \begin{tabular}{lllllllllllllllllllllllllllllllllll$	35 kNm	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 231 <u>1175</u> <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm 0.00 mm 19.47 mm	1 Mpa	
This section is a Class 1Moment Capacity: $Mr = \begin{tabular}{lllllllllllllllllllllllllllllllllll$	35 kNm 06 λ + -7.26E+07	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 231 1175 <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm 0.00 mm 19.47 mm 27.92 mm	1 Mpa	
This section is a Class 1Moment Capacity:Mr = ϕZFy or or ϕSFy 910.Lateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp =1011.5 kNmCharacteristic Length Mu = 2.1467Mp477721.5 λ^2 +-2.50E+ λ =15.22or	35 kNm 06 λ + -7.26E+07 -9.99 677.7	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } \Omega}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 231 1175 <u>Check:</u> 4 112.03 kN 1.34 m 7.32 mm 12.16 mm 0.00 mm 19.47 mm 27.92 mm	1 Mpa	

Roof	Girder	^r Beam	Desig	gn	
dline: C			_		
e: 3-4					
	= <u>309.98</u> = <u>350</u>	kN G = Mpa w =	200 Gpa 77000 Mpa 69.66 kN/m 19.16 kN/m 2189.492 x 10^3	Weight = mm^3	11.659 kN
b From Zx choose Section:	W410 X 1	32			
Properties: Please enter of	imensions below				
$d = \frac{425 \text{ mm}}{263 \text{ mm}}$ $b = \frac{263 \text{ mm}}{19 = \frac{6.74\text{E}+07}{110000000000000000000000000000000000$	t = w = Cw =	22.2 mm 13.3 mm 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 2.56E+06 2.41E+06	mm^3
Classification of Section:					
	ngo is Class 1				
b/t = 5.923423 Fla	nge is Class 1				
h/w = 28.61654 Fla	nge is Class 1				
Assuming that there is no axial loadi	ng Cf = 0				
This section is a Class 1					
Mamont Conseitu		Sheer Con	o citrur		
Moment Capacity:		<u>Shear Cap</u>			
φΖϜγ Mr = or 910.35 kN	m	**Assumir	ng No Stiffners: kv =	5.34	
φSFy		Fs = 0.66Fy	/ =	231 Mpa	
		Vs =	1	175 kN	Shear OK
Lateral Buckling Check:		Deflection	Check:		
		# of Loads	5		
Doubly Symmetric Class 1 or 2		P = Spacing =	123.99 kN 1.483 m		
**Assuming Mu > 0.67MP		A (D1 · D5)	16.00		
Mp = 1011.5 kNm		Δ (P1+P5) = Δ (P2+P4) = Δ (P3) =	28.46 mm	1	
Characteristic Length Mu = 2.1467Mp					
Wu - 2.140/Wp		Δ =	61.25 mm		
477721.5 λ^2 + -2.50Ε+06 λ +	-7.26E+07	Δmax =	37.08 mm		
λ = 15.22 or L = 3902 mm	-9.99	Max D	eflection Exceeded		
Mu = 2171.4 Assumption Correct: Mu >	677.7 • 0.67Mp				

Ro	of Girde	er Bean	n Desig	'n	
line: C e: 4-5					
\rightarrow \leftarrow w	Vf = 313.5 Fy = 35	$\frac{3}{2} \text{ kNm} \qquad \text{E} = \\ \frac{3}{2} \text{ kN} \qquad \text{G} = \\ 0 \text{ Mpa} \qquad \text{w} = \\ 0 \text{ mm} \qquad \text{wll} = \\ \end{array}$	200 Gpa 77000 Mpa 69.67 kN/m 19.17 kN/m	Weight =	11.79 kl
	Mr = φZxFy —	→ Zx =	2239.46 x 10^3	mm^3	
\leftarrow	Assumption OK				
b From Zx choose Section:	W410 X	(132			
Properties: Plea	se enter dimensions belo	w			
d = <u>425</u> mm b = <u>263</u> mm ly = <u>6.74E+07</u> mm ⁴ lx = 5.45E+08 mm ⁴		22.2 mm 13.3 mm 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 r 2.56E+06 r 2.41E+06 r	mm^3
Classification of Section:					
b/t = 5.923423	Flange is Class 1				
h/w = 28.61654	Flange is Class 1				
This section is a Class 1 Moment Capacity:		<u>Shear Cap</u>	acity:		
φZFy Mr = or	910.35 kNm	**Assumi	ng No Stiffners: kv =	5.34	
фSFy		Fs = 0.66F	y = 23	1 Mpa	
		Vs =	117	′5 kN 5	Shear OK
Lateral Buckling Check:		Deflection			
Doubly Symmetric Class 1	or 2	# of Loads P =	5 125.41 kN		
**Assuming Mu > 0.67MP		Spacing =	1.5 m		
Mp = 1011.5 kNm	1	Δ (P1+P5) = Δ (P2+P4) = Δ (P3) =	29.77 mm		
Characteristic Length Mu = 2.1467Mp		A _	64.07		
	2.50E+06 λ + -7.26E+0	Δ = 7 Δmax =	64.07 mm 37.50 mm		
477721.5 λ^2 + -2					
477721.5 λ^{2} + -2 λ = 15.22 L = 3902 mm	or -9.99	Max D	eflection Exceeded		
λ = 15.22	677.7	Max D	eflection Exceeded		

	eam	Desig	n	
c		U		
$ \begin{array}{c} & \psi \\ \uparrow t \\ & Vf = \\ & Fy = \\ & & 350 \\ & & Fy = \\ & & & 8900 \\ \end{array} $	E = G = w = wII =	200 Gpa 77000 Mpa 69.66 kN/m 19.16 kN/m	Weight =	11.659 k
Mr = φZxFy Assumption OK	→ Zx =	2189.492 x 10^3	mm^3	
From Zx choose Section: W410 X 132				
Properties: Please enter dimensions below				
b = 263 mm w = 2	22.2 mm 13.3 mm +12 mm^6	Zx = Sx = J =	2.89E+06 2.56E+06 2.41E+06	mm^3
Classification of Section:				
b/t = 5.923423 Flange is Class 1				
h/w = 28.61654 Flange is Class 1				
Assuming that there is no axial loading Cf = 0				
Assuming that there is no axial loading Cf = 0 This section is a Class 1 Moment Capacity:	Shear Capa	city:		
This section is a Class 1		<u>city:</u> g No Stiffners: kv =	5.34	
This section is a Class 1 <u>Moment Capacity:</u>		g No Stiffners: kv =	5.34 31 Mpa	
This section is a Class 1 Moment Capacity: ϕ ZFy Mr = or 910.35 kNm	**Assuminį	g No Stiffners: kv = = 23	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: ϕ ZFy Mr = or 910.35 kNm	**Assuming Fs = 0.66Fy	g No Stiffners: kv = = 2: 117	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity:	**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P = Spacing =	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: Mr = ϕ ZFy Mr = or 910.35 kNm ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 2	**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P =	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: Mr = ϕ ZFy Mr = or 910.35 kNm ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } 0}{\text{# of Loads}}$ P = Spacing = $\Delta (P1+P5) =$ $\Delta (P2+P4) =$ $\Delta (P3) =$	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm 16.71 mm	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: $Mr = \begin{array}{c} \phi ZFy \\ or \\ \phi SFy \end{array}$ Lateral Buckling Check: Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP Mp = 1011.5 kNm Characteristic Length	**Assuming Fs = 0.66Fy Vs = $\frac{\text{Deflection } 0}{\text{# of Loads}}$ P = Spacing = $\Delta (P1+P5) = \\\Delta (P2+P4) =$	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm	31 Mpa	Shear OK
This section is a Class 1 Moment Capacity: $Mr =$ ϕ ZFy $provestimes relation on the second $	**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 2: <u>117</u> <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm 16.71 mm 61.25 mm	31 Mpa	Shear OK
This section is a Class 1Moment Capacity: $Mr = \begin{array}{c} \phi ZFy \\ or \\ or \\ 910.35 \ kNm \end{array}$ Lateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp = 1011.5 \ kNm \\Characteristic Length Mu = 2.1467Mp 477721.5 λ^2 + -2.50E+06 λ + -7.26E+07 λ = 15.22 or -9.99	**Assuming Fs = 0.66Fy Vs = <u>Deflection (</u> # of Loads P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	g No Stiffners: kv = = 2: <u>5</u> 117 <u>Check:</u> 5 123.99 kN 1.483 m 16.08 mm 28.46 mm 16.71 mm 61.25 mm 37.08 mm	31 Mpa	Shear OK


Roof Gir	rder Bean	n Desig	n
lline: E			
2: 2-3			
$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & $	409.37 kNm E = 244.4 kN G = 350 Mpa w = 6700 mm wll =	200 Gpa 77000 Mpa 72.96 kN/m 23 kN/m	Weight = 8.777 k
Mr = φZxFy Assumption ←b		1299.587 x 10^3	mm^3
From Zx choose Section:	410 X 132		
Properties: Please enter dimension	ns below		
b = <u>263</u> mm	t = 22.2 mm w = 13.3 mm Cw = 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 mm^3 2.56E+06 mm^3 2.41E+06 mm^4
Classification of Section:			
b/t = 5.923423 Flange is Cla	ass 1		
h/w = 28.61654 Flange is Cla	ass 1		
Assuming that there is no axial loading Cf = 0 This section is a Class 1 <u>Moment Capacity:</u>	<u>Shear Ca</u>	apacity:	
φΖFy Mr = or 910.35 kNm φSFy	**Assun Fs = 0.66	ning No Stiffners: kv =	5.34 1 Mpa
ψοΓγ	Vs =		5 kN Shear OK
Lateral Buckling Check: Doubly Symmetric Class 1 or 2		on Check:	
**Assuming Mu > 0.67MP	Spacing	= 1.34 m	
Mp = 1011.5 kNm	Δ (P1+P5 Δ (P2+P4 Δ (P3) = 13.26 mm	
Characteristic Length Mu = 2.1467Mp	Δ =	21.24 mm	
477721.5 λ^2 + -2.50Ε+06 λ +	-7.26E+07 Δmax =	27.92 mm	
λ = 15.22 or -9.9 L = 3902 mm	99 <u>Defle</u>	ctions are Acceptable	
Mu = 2171.4 677.7 Assumption Correct: Mu > 0.67Mp			

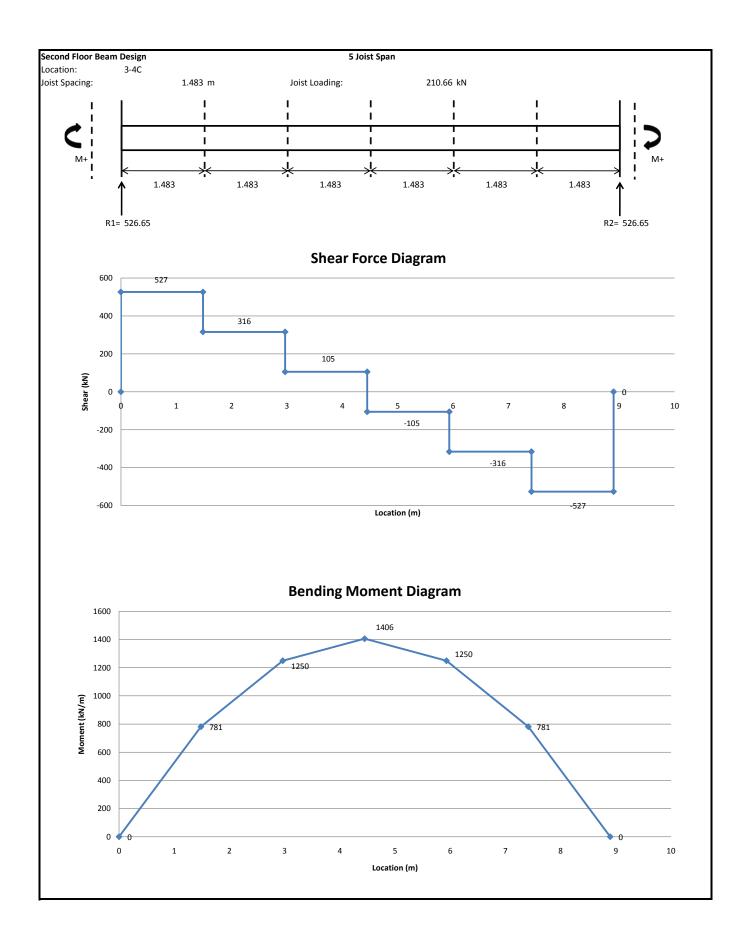
E			Deam	Desi	5''	
\rightarrow	, w	Mf = 752.33 kN Vf = 338.13 kN Fy = 350 Mp L = 8900 mm	G = a w =	200 Gpa 77000 Mpa 75.98 kN/m 19.16 kN/m	Weight =	= 11.659 k
		Mr = фZxFy	→ Zx =	2388.349 x 10^3	8 mm^3	
<i>~</i>	b >					
From Zx c	hoose Section:	W410 X 132	2			
Properties	s: Please e	enter dimensions below				
d = b = Iy = Ix =	425 mm 263 mm 6.74E+07 mm^4 5.45E+08 mm^4	t = w = Cw = 2.1	22.2 mm 13.3 mm 73E+12 mm^6	Zx = Sx = J =	2.56E+0	06 mm^3 06 mm^3 06 mm^4
<u>Classificat</u>	tion of Section:					
b/t =	5.923423	Flange is Class 1				
h/w =	28.61654	Flange is Class 1				
Assuming	that there is no axial	loading Cf = 0				
-	that there is no axial	l loading Cf = 0				
This section	on is a Class 1	l loading Cf = 0				
-	on is a Class 1	l loading Cf = 0	<u>Shear Capa</u>	acity:		
This section	on is a Class 1 <u>Capacity:</u> φΖFy	I loading Cf = 0 35 kNm		acity: g No Stiffners: kv =	= 5.3	34
This section	on is a Class 1 <u>Capacity:</u> φΖFy	_		g No Stiffners: kv :	= 5.3 231 Mpa	34
This section	on is a Class 1 <u>Capacity:</u>	_	**Assumin	g No Stiffners: kv =		34 Shear OK
This section Moment (Mr =	on is a Class 1 <u>Capacity:</u> φZFy or 910. φSFy uckling Check:	35 kNm	**Assumin Fs = 0.66Fy Vs = <u>Deflection</u> # of Loads	g No Stiffners: kv = r = <u>Check:</u> 5	231 Mpa	
This section <u>Moment (</u> Mr = <u>Lateral Bu</u> Doubly Sy	on is a Class 1 <u>Capacity:</u> φΖFy or 910. φSFy	35 kNm	**Assumin Fs = 0.66Fy Vs = <u>Deflection</u>	g No Stiffners: kv = r = <u>1</u> <u>Check:</u>	231 Mpa	
This section <u>Moment (</u> Mr = <u>Lateral Bu</u> Doubly Sy	on is a Class 1 Capacity: φZFy or 910. φSFy uckling Check: mmetric Class 1 or 2	35 kNm	**Assumin Fs = 0.66Fy Vs = <u>Deflection</u> # of Loads P =	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm	231 Mpa L175 kN	
This section Moment (Mr = Lateral Bu Doubly Sy **Assumi Mp =	on is a Class 1 Capacity: φZFy or 910. φSFy uckling Check: mmetric Class 1 or 2 ng Mu > 0.67MP 1011.5 kNm istic Length	35 kNm	**Assumin Fs = 0.66Fy Vs = Deflection # of Loads P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) =	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm 18.22 mn	231 Mpa L175 kN	
This section Moment (Mr = Lateral Bu Doubly Sy **Assumi Mp = Character	on is a Class 1 Capacity: φZFy or 910. φSFy uckling Check: mmetric Class 1 or 2 ng Mu > 0.67MP 1011.5 kNm istic Length i67Mp	35 kNm	**Assumin Fs = 0.66Fy Vs = Deflection # of Loads P = Spacing = Δ (P1+P5) = Δ (P2+P4) =	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm	231 Mpa L175 kN	
This section Moment (Mr = Lateral Bu Doubly Sy **Assumi Mp = Character Mu = 2.14	on is a Class 1 Capacity: φZFy or 910. φSFy uckling Check: mmetric Class 1 or 2 ng Mu > 0.67MP 1011.5 kNm istic Length i67Mp	35 kNm	**Assumin Fs = 0.66Fy Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = $\Delta (P1+P5) =$ $\Delta (P2+P4) =$ $\Delta (P3) =$ $\Delta =$ $\Delta max =$	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm 18.22 mn 66.81 mm	231 Mpa <u>L175 kN</u> n	
This section Moment (Mr = Lateral Bu Doubly Sy **Assumi Mp = Character Mu = 2.14 477721.5 λ =	$\frac{\text{Capacity:}}{\phi ZFy} \qquad 910.$ $\frac{\phi ZFy}{\phi SFy} \qquad 910.$ $\frac{\phi SFy}{\phi SFy} \qquad 910.$ $\frac{\phi SFy}{\phi SFy} \qquad 910.$ $\frac{\phi SFy}{\phi SFy} \qquad 910.$	35 kNm 06 λ + -7.26E+07 -9.99 677.7	**Assumin Fs = 0.66Fy Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = $\Delta (P1+P5) =$ $\Delta (P2+P4) =$ $\Delta (P3) =$ $\Delta =$ $\Delta max =$	g No Stiffners: kv = r = <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm 18.22 mn 66.81 mm 37.08 mm	231 Mpa <u>L175 kN</u> n	

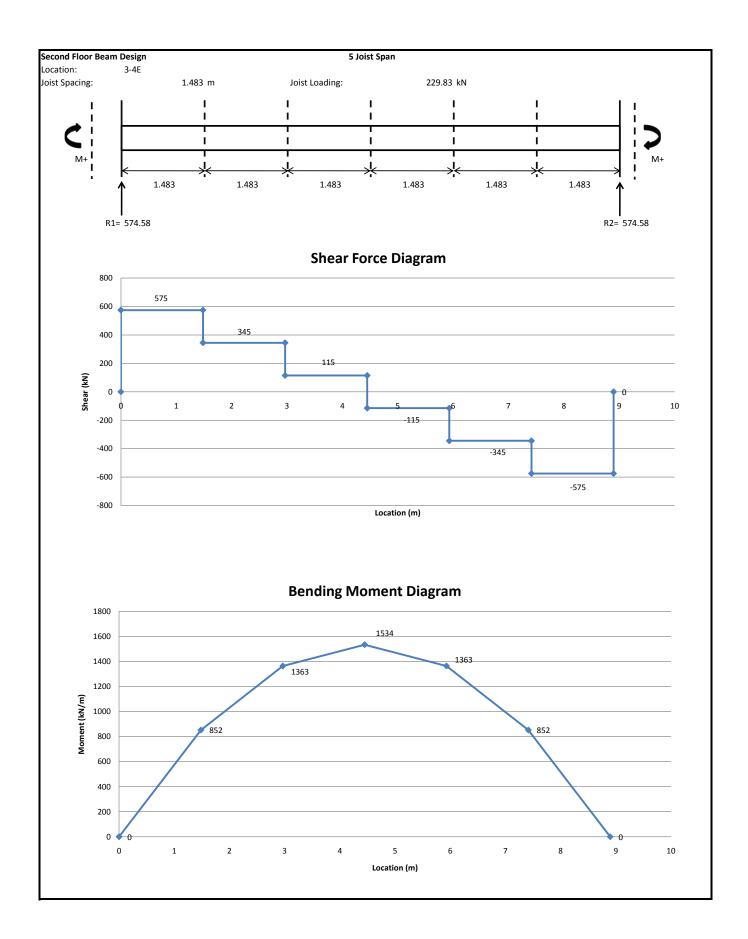
\rightarrow \leftarrow w	Mf = <u>769.44</u> kNm Vf = <u>341.98</u> kN Fy = 350 Mpa L = <u>9000</u> mm Mr = ϕ ZxFy Assumption OK	G = 77 w = 7 wll = 1	200 Gpa 7000 Mpa 5.99 kN/m 9.17 kN/m .667 x 10^3	Weight = mm^3	11.79
b From Zx choose Section:	W410 X 132				
Properties: Please	enter dimensions below				
d = 425 mm b = 263 mm ly = 6.74E+07 mm^4 lx = 5.45E+08 mm^4		22.2 mm 13.3 mm E+12 mm^6	Zx = Sx = J =	2.89E+06 r 2.56E+06 r 2.41E+06 r	mm^3
Classification of Section:					
b/t = 5.923423	Flange is Class 1				
h/w = 28.61654	Flange is Class 1				
Assuming that there is no axis	al loading Cf = 0				
This section is a Class 1					
This section is a Class 1 Moment Capacity:		<u>Shear Capacity:</u>			
<u>Moment Capacity:</u> ¢ZFy) 35 kNm	<u>Shear Capacity:</u> **Assuming No S	tiffners: kv =	5.34	
<u>Moment Capacity:</u> φΖFy	0.35 kNm			5.34 . Mpa	
Moment Capacity:	0.35 kNm	**Assuming No S		Мра	Shear OK
<u>Moment Capacity:</u> φZFy Mr = or 910 φSFy <u>Lateral Buckling Check:</u> Doubly Symmetric Class 1 or 2		**Assuming No S Fs = 0.66Fy = Vs = <u>Deflection Check:</u> # of Loads	231 1175	Мра	Shear OK
Moment Capacity: ϕ ZFyMr =or ϕ SFy		**Assuming No S Fs = 0.66Fy = Vs = Deflection Check: # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3	231 1175 5 6.79 kN	Мра	Shear OK
<u>Moment Capacity:</u> φZFy Mr = or 910 φSFy <u>Lateral Buckling Check:</u> Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP		**Assuming No S Fs = 0.66Fy = Vs = Deflection Check: # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3 Δ (P3) = 1	231 1175 5 6.79 kN 1.5 m 8.35 mm 2.47 mm 9.06 mm	Мра	Shear OK
Moment Capacity: ϕ ZFy Mr = or 910 ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 3 **Assuming Mu > 0.67MP Mp = 1011.5 kNm Characteristic Length Mu = 2.1467Mp		**Assuming No S Fs = 0.66Fy = Vs = Deflection Check: # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3 Δ (P3) = 1 Δ = 6	231 1175 5 6.79 kN 1.5 m 8.35 mm 2.47 mm	Мра	Shear OK
Moment Capacity: ϕ ZFy Mr = or 910 ϕ SFy Lateral Buckling Check: Doubly Symmetric Class 1 or 3 **Assuming Mu > 0.67MP Mp = 1011.5 kNm Characteristic Length Mu = 2.1467Mp	2 +06 λ + -7.26E+07	**Assuming No S Fs = 0.66Fy = Vs = Deflection Check: # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3 Δ (P3) = 1 Δ = 6	231 1175 5 6.79 kN 1.5 m 8.35 mm 2.47 mm 9.06 mm 9.89 mm 7.50 mm	Мра	Shear OK
Moment Capacity: $\[\begin{smallmatrix} \phi ZFy \\ Mr = or 910 \\ \phi SFy \end{smallmatrix}$ Lateral Buckling Check:Doubly Symmetric Class 1 or 1**Assuming Mu > 0.67MPMp = 1011.5 kNmCharacteristic Length Mu = 2.1467Mp477721.5 λ^2 + -2.50E λ = 15.22 or	2 +06 λ + -7.26E+07 -9.99 677.7	**Assuming No S Fs = 0.66Fy = Vs = <u>Deflection Check</u> : # of Loads P = 13 Spacing = Δ (P1+P5) = 1 Δ (P2+P4) = 3 Δ (P3) = 1 $\Delta = 6$ Δ max = 3	231 1175 5 6.79 kN 1.5 m 8.35 mm 2.47 mm 9.06 mm 9.89 mm 7.50 mm	Мра	Shear OK

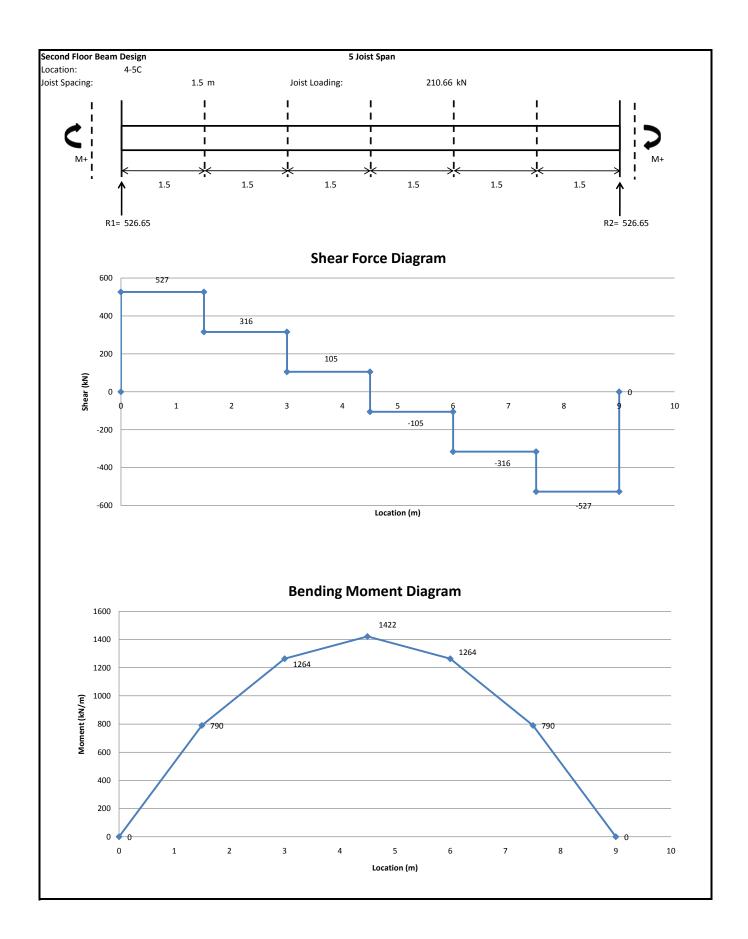
	Roof Girder Beam Design						
:: E 7							
, ↓ t ↓ t w	Mf = 752.33 Vf = 338.13 Fy = 350 L = 8900 Mr = φZxFy	kN G = Mpa w =	200 Gpa 77000 Mpa 75.98 kN/m 19.16 kN/m 2388.349 x 10^3	Weight = mm^3	11.659 k		
From Zx choose Section:	Assumption OK W410 X 1	32					
Properties: Please	enter dimensions below						
d = <u>425</u> mm b = <u>263</u> mm ly = <u>6.74E+07</u> mm^4 lx = <u>5.45E+08</u> mm^4	t = w = Cw =	22.2 mm 13.3 mm 2.73E+12 mm^6	Zx = Sx = J =	2.89E+06 2.56E+06 2.41E+06	mm^3		
Classification of Section:							
b/t = 5.923423	Flange is Class 1						
h/w = 28.61654	Flange is Class 1						
This section is a Class 1 Moment Capacity:		<u>Shear Cap</u>	acity:				
<u>Moment Capacity:</u> ¢ZFy	0.35 kNm		ng No Stiffners: kv =	5.34 31 Mpa			
<u>Moment Capacity:</u> ¢ZFy Mr = or 910	0.35 kNm	**Assumir	ng No Stiffners: kv = y = 2	31 Mpa	Shear OK		
<u>Moment Capacity:</u> ¢ZFy Mr = or 910		**Assumir Fs = 0.66F	ng No Stiffners: kv = y = 2 11 <u>Check:</u>	31 Mpa	Shear OK		
<u>Moment Capacity:</u> φZFy Mr = or 910 φSFy Lateral Buckling Check:		**Assumir Fs = 0.66Fv Vs = <u>Deflection</u> # of Loads P =	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 5 135.25 kN 1.483 m	31 Mpa	Shear OK		
Moment Capacity: ϕ ZFyMr =or910 ϕ SFyLateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp =1011.5 kNm		**Assumin Fs = 0.66Fv Vs = <u>Deflection</u> # of Loads P = Spacing =	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm	31 Mpa	Shear OK		
<u>Moment Capacity:</u> φZFy Mr = or 910 φSFy <u>Lateral Buckling Check:</u> Doubly Symmetric Class 1 or 2 **Assuming Mu > 0.67MP		**Assumin Fs = 0.66Fv Vs = Deflection # of Loads P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) =	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 17.55 mm 18.22 mm	31 Mpa	Shear OK		
Moment Capacity: ϕ ZFyMr =or910 ϕ SFyLateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp =1011.5 kNmCharacteristic LengthMu = 2.1467Mp		**Assumin Fs = 0.66Fv Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) =	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 31.04 mm	31 Mpa	Shear OK		
Moment Capacity: ϕ ZFyMr =or910 ϕ SFyLateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp =1011.5 kNmCharacteristic LengthMu = 2.1467Mp	2 +06 λ + -7.26E+07	**Assumin Fs = 0.66Fv Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	ng No Stiffners: kv = y = 2 <u>11</u> <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 17.55 mm 18.22 mm 66.81 mm	31 Mpa	Shear OK		
Moment Capacity: ϕ ZFyMr =or910 ϕ SFyLateral Buckling Check:Doubly Symmetric Class 1 or 2**Assuming Mu > 0.67MPMp =1011.5 kNmCharacteristic LengthMu = 2.1467Mp477721.5 λ^2 +-2.50E λ =15.22or	2 +06 λ + -7.26E+07 -9.99 677.7	**Assumin Fs = 0.66Fv Vs = $\frac{\text{Deflection}}{\text{# of Loads}}$ P = Spacing = Δ (P1+P5) = Δ (P2+P4) = Δ (P3) = Δ = Δ max =	ng No Stiffners: kv = y = 2 <u>Check:</u> 135.25 kN 1.483 m 17.55 mm 17.55 mm 18.22 mm 66.81 mm 37.08 mm	31 Mpa	Shear OK		

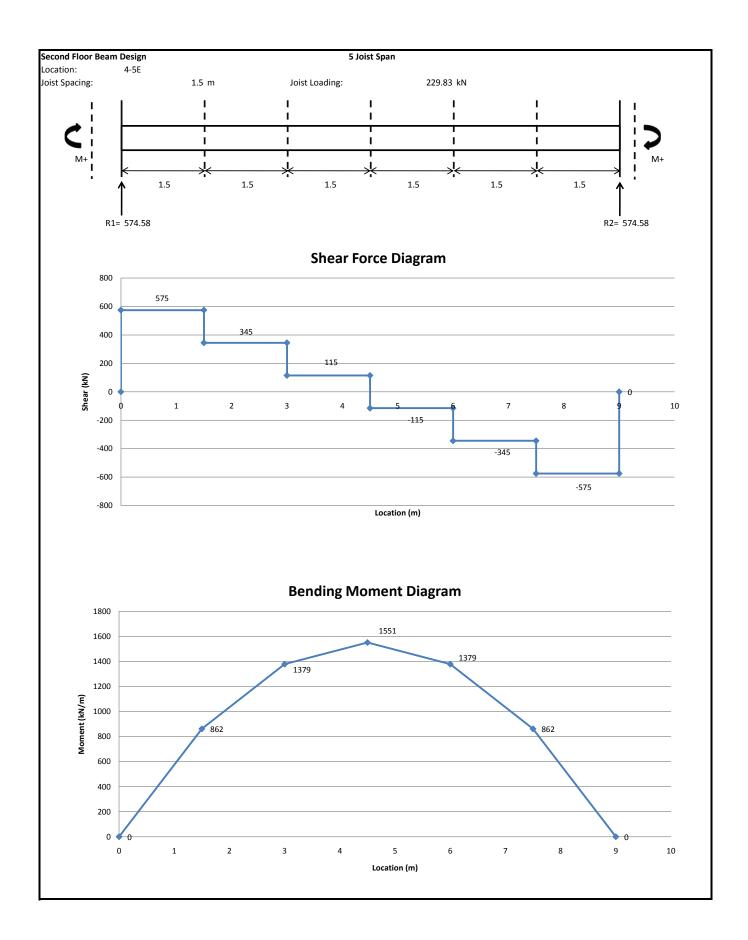
CDNL Engineering Consultants

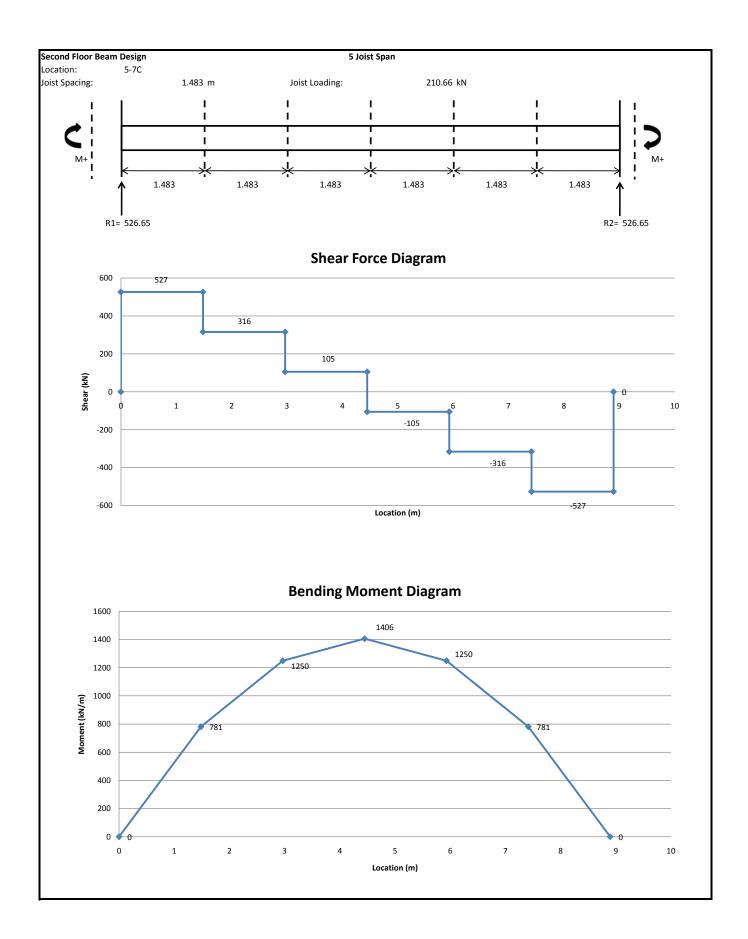
CDNL Engineering Consultants

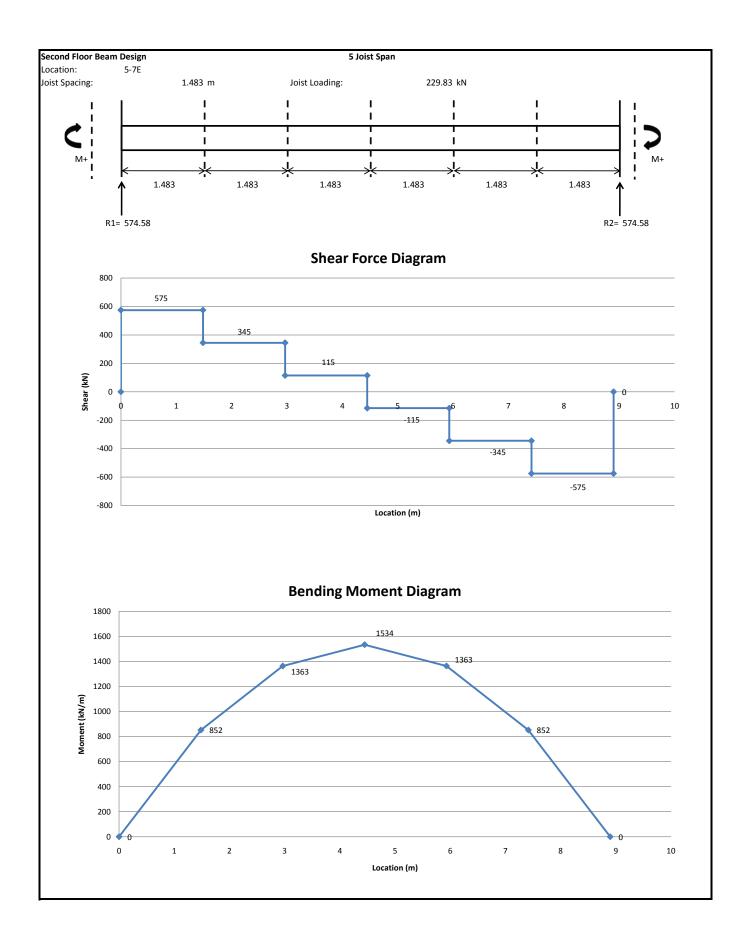

Title: FLOOR BEAM Calculated by: DD Reviewed by:
ASSUME CLASS 3-SECTION
$Mr = \Phi Mp = \Phi Sx Fy$
REQUIRED $S_x = \frac{M_{Fmax}}{\Phi_{Fy}} \rightarrow S_x = \frac{1407.2 \times 10^6 \text{ Nmm}}{(0.9 \times 350 \text{ Nmm}^2} = 4467 \times 10^3 \text{ mm}^3$ φ_{Fy}
TRY W530 × 182 ; WHERE Z = 5040 × 103 mm3
d= 551mm t= 24,4 mm
b=315mm W=14:0mm
CHECK TO MAKE SURE SECTION MEETS CLASS Z REQUIREMENTS
FLANGE $b = 315 = 6.45$ $\leq 170 = 9.09$ at $a(a4.4)$ JFy
WEB $h = d - 2t = 551 - 2(24.4) = 35.87 \le 1700 = 90.9$ W W 14.0 JFg
.', BOTH SLENDEPNESS RATIOS MEET THE REQUIREMENTS FOR CLASS 2
CHECK MOMENT CAPACITY CL. 13.5
FOR CLASS 2 SECTION
$Mr = \Phi Z Fy$
= $(0.9 \times 5040 \times 10^3 \text{ mm}^3 \times 350 \text{ MAz})$
= 1587.6 KN.M. > MAX BENDING MOMENT = 1407.2 KN.M .: OK
CHECK MOMENT CAPACITY OF UNBRACED (LATERALLY UNSUPPORTED) BEAM CL. 13.69
$M_{u} = \underbrace{W_{2} I}_{L} \int E I_{y} G J + \left(\underbrace{\Pi E}_{L} \right)^{2} I_{y} C w$
$ \begin{split} \omega_{2} &= 1.0 \\ E &= 200 \ GPa \\ 6 &= 77000 \ MPa \\ Ty &= 127 \ K10^{6} \ mm^{4} \\ Cw &= 3520 \ K10^{9} \ mm^{4} \\ J &= 3740 \ K10^{3} \ mm^{4} \end{split} $

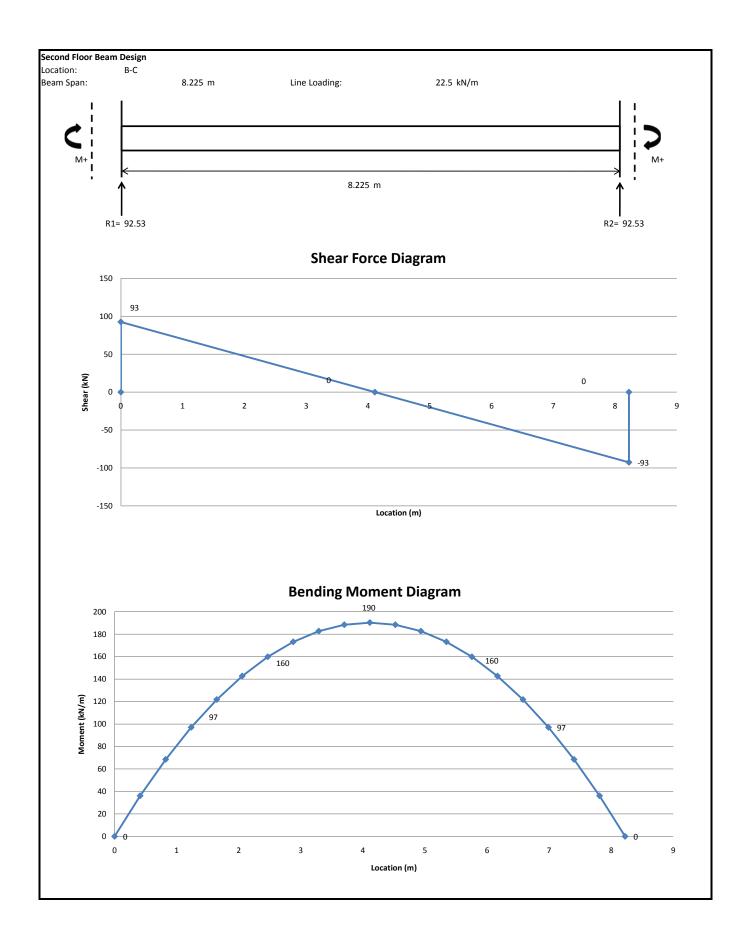

.

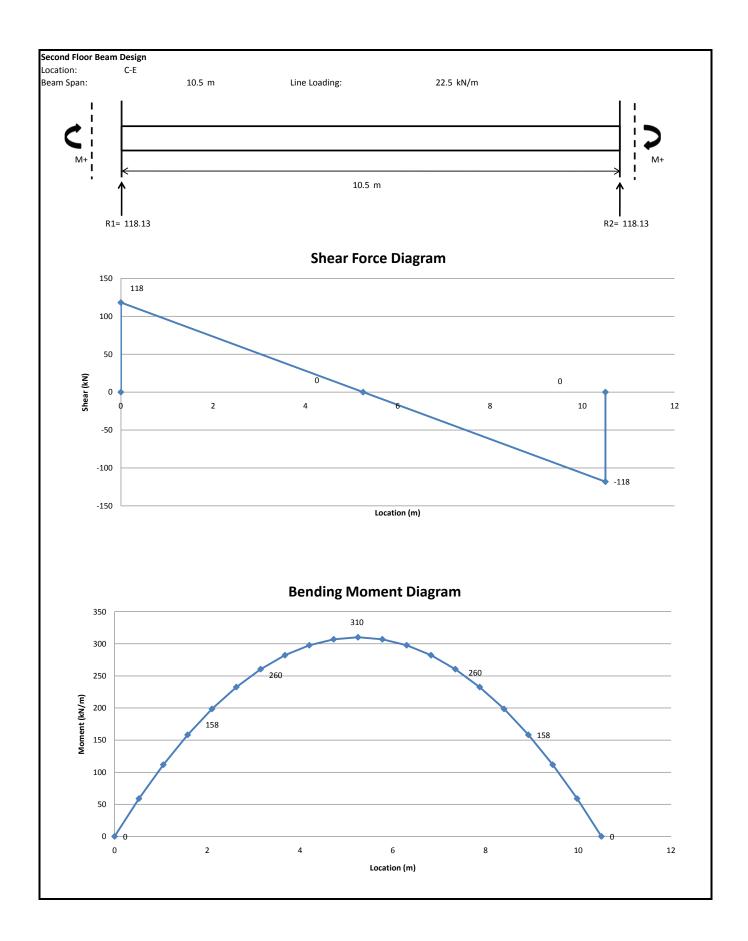

CDNL Engineering Consultants

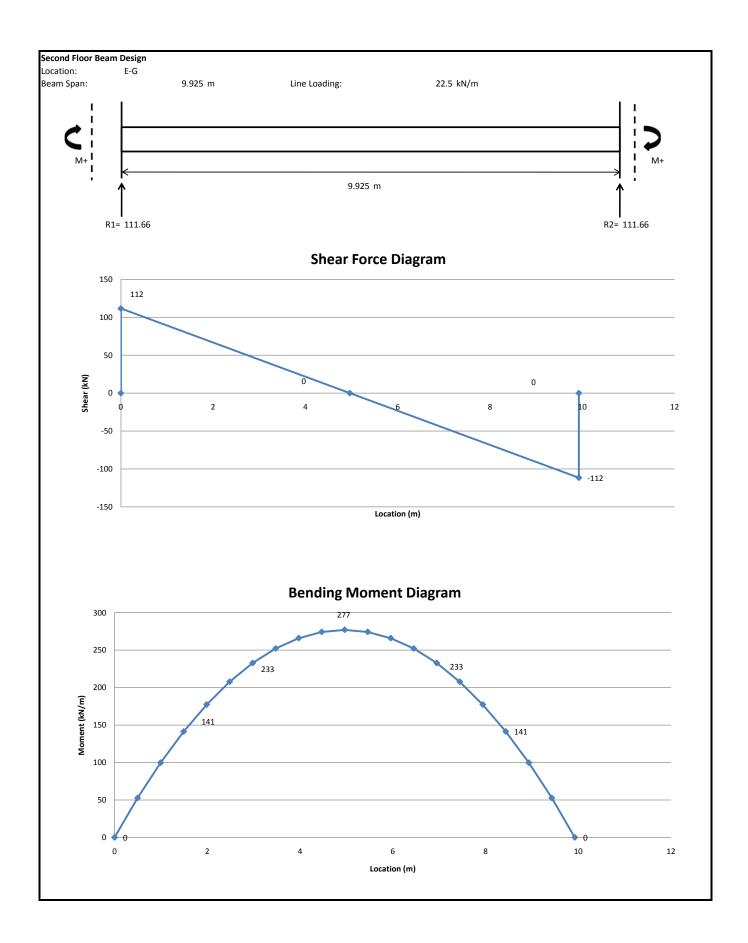

$$\begin{aligned} & \text{CONNERDURATING CONSULTATION CONSULTA$$

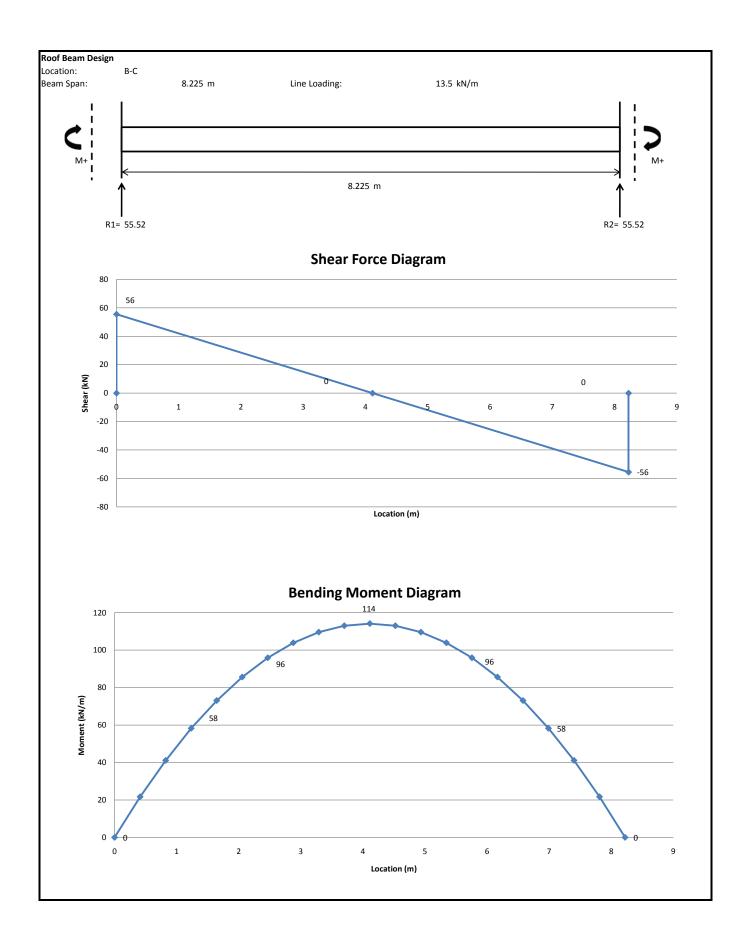

CDNL Engineering Consul	itants		
Title: FLOOR BEAM			
Calculated by: <u>DD</u>			
Reviewed by:	Martin	· · · · · · · · · · · · · · · · · · ·	CDNL Engineering Consultants
Page: <u> </u> of <u> </u>			
FOR PL & PS ()			
$\Delta_r = \frac{Pa}{24 EI} (3p^2 - 1)$	4a [*]) = (105.21 24120	(N) (1.483) 00,000 X 0.00	$(3(8.9)^2 - 4(1.483)^2)$
	= 7.3.6/	mm	
$FOR P_2 = P_4$			
$\Delta_{x} = \frac{\beta a}{24 EI} (3p^{2} - r)$	192) = (105.2KN 24(200	<u>(x 2.966)</u> ,000 x 0.0010	$(3(3,9)^2 - 4(2.916)^2)$
	= 13.0 3m	n m	
FOR P3			
$\Delta_{\rm X} = \underline{P1^3} = (k)$	25.2(8.9)3		- 7.65 imm
48EI 40	81200,000 × 0.00	$(01m^4)$	
$\Delta_{\rm X} = 7.36 \rm mm$ $= 28.04 \rm m$	nη		
DEFLECTION LIMIT	360	340	2 1, 1 2 m/m
		and the second	
		THEFT	
	a a character a construction of the second		
a hara ay ang sa gang sa			
	where the state of an end of the state of th	at and a second second second	
	. Lader in the production in the second	and man be then	
and the second	a start and a start and a start		
and an array of the second	and the second		
and the second sec			
		des and a family de	

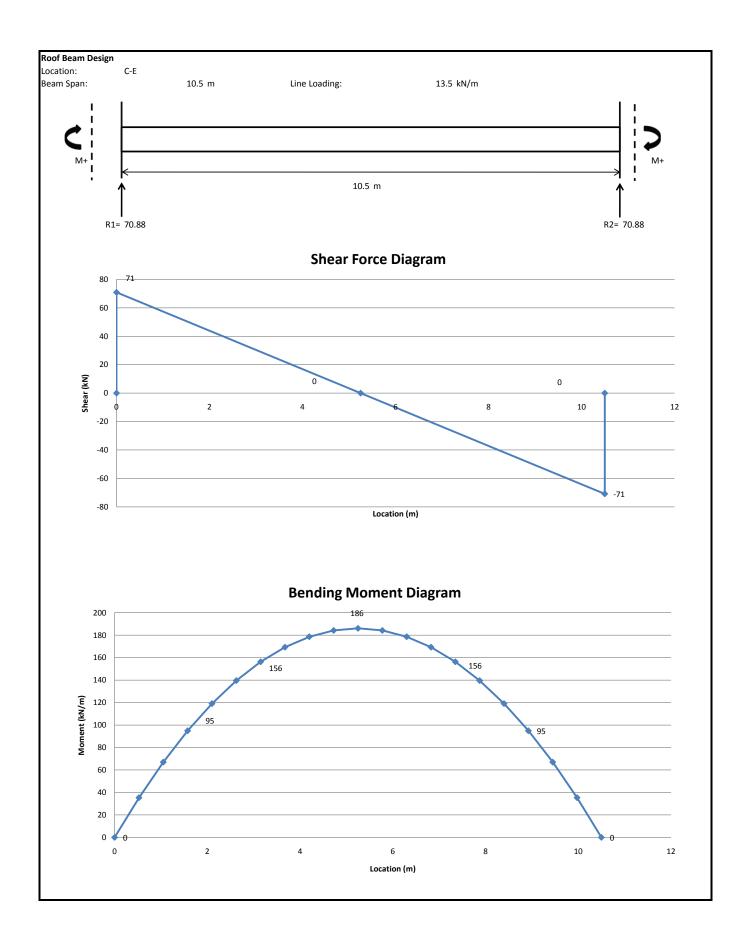


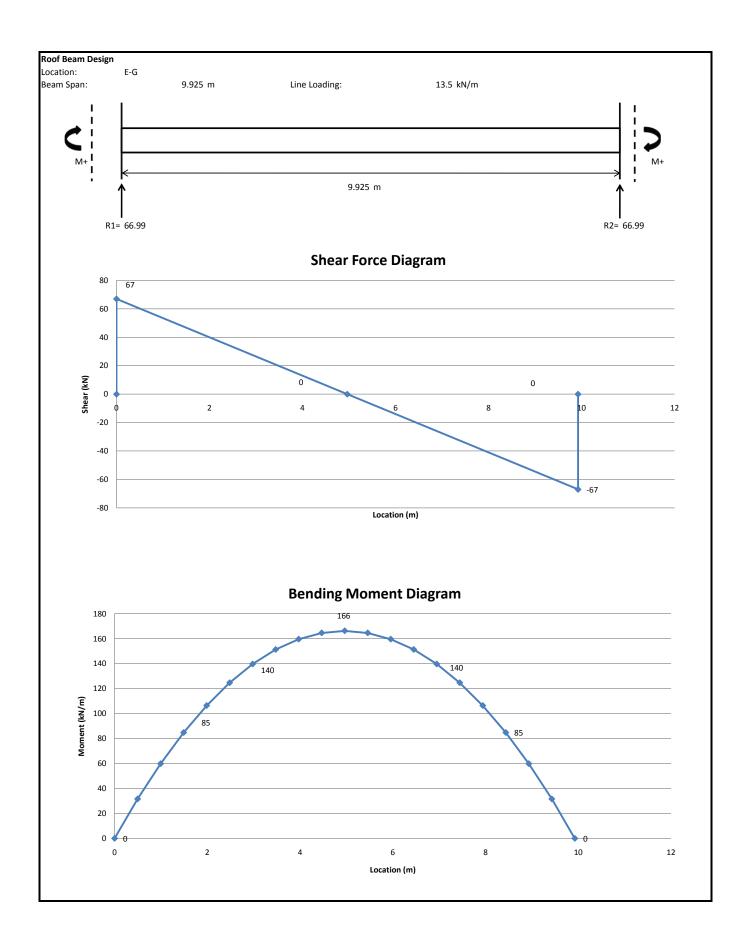


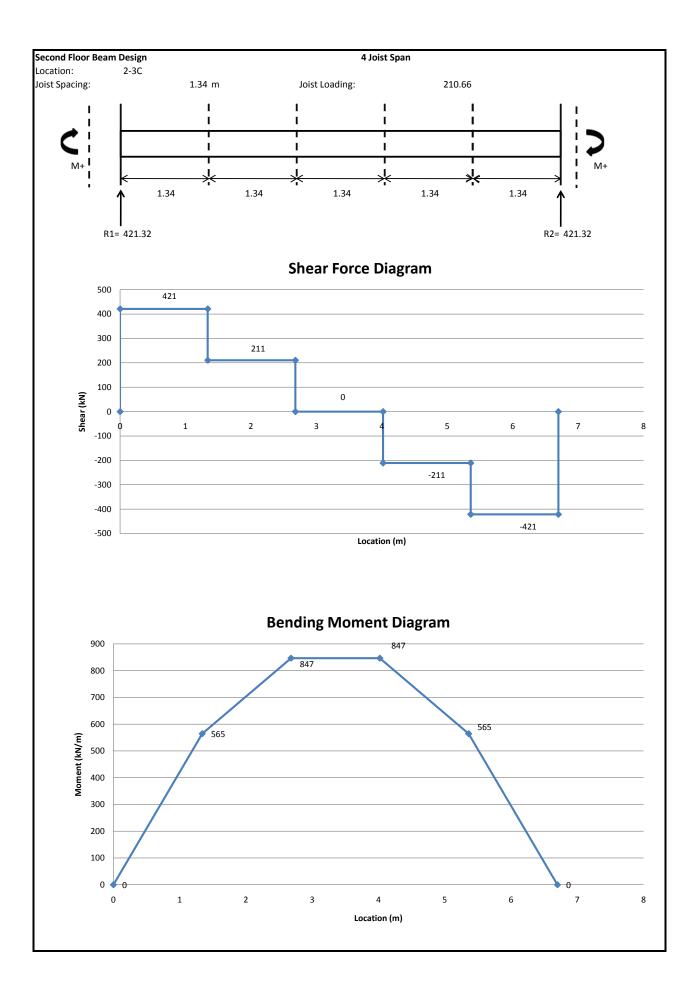


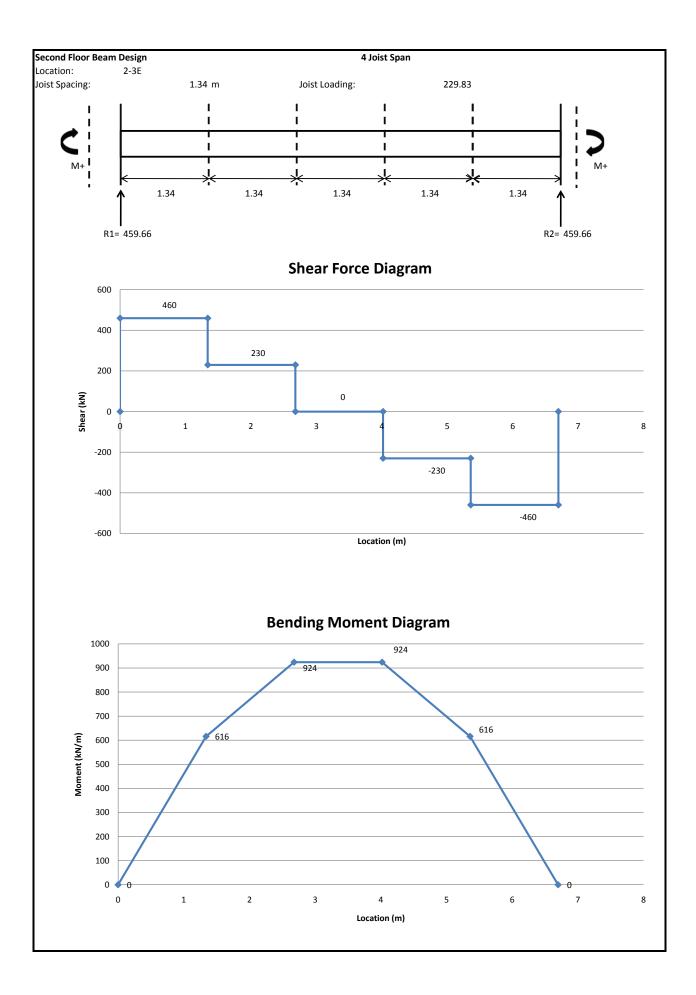












Roof Loads

Dead loads of Roof System		
Modified Bitumen Cap and Base	0.27	kPa
6 mm Protection Board	0.01	kPa
100 mm Rigid Insulation	0.07	kPa
12.5 mm Exterior Grade Gypsum Board Sheathing	0.08	kPa
12.7 mm Gypsum Board	0.01	kPa
Metal Deck	0.015	kPa
Fire Protection	0.07	kPa
Ducts/Pipes/Wiring	0.25	kPa
Structural Steel	0.25	
Joists	0.2	kPa
Total	1.225	kPa

Load Combinations - For Building with Normal Importance Factor

Dead	Load = 1.225	kPa	Snow Load =	4.32 kPa
Live L	.oad = 1	kPa	Wind Load =	2.3 kPa
Load Case	Principal Loads	Load (kPa)		
1	1.4D	1.715		
2	1.25D + 1.5L+0.4Wor 0.5S	5.19		
3	1.25D + 1.5S +0.4W	8.93		Max Load
4	1.25D + 1.4W+0.5S	6.91		8.93 kPa
5	1.0D + 1.0E+0.5L+0.25S	2.305		

Linear Load

= 8.93 kPa * 1.50 m

= 13.40 kN/m

From CANAM Joist tables,

Span =	10.5	m	Selected Depth (d) =	650	mm
Factored Load =	22.5	kN/m	Mass of Joist =	31.8	kg/m

Area	Span (m)	Number of Joists	Joist Spacing(m)	Joist Mass (kg)	Load at End of Joist (kN)
2B	8.225	4	1.34	0	55.09
2C	10.5	4	1.34	0	70.32
2E	9.925	4	1.34	0	66.47
3B	8.225	5	1.48	0	55.09
3C	10.5	5	1.48	0	70.32
3E	9.925	5	1.48	0	66.47
4B	8.225	5	1.5	0	55.09
4C	10.5	5	1.5	0	70.32
4E	9.925	5	1.5	0	66.47
5B	14.095	5	1.48	0	94.40
5C	10.5	5	1.48	0	70.32
5E	9.925	5	1.48	0	66.47

Roof Loads

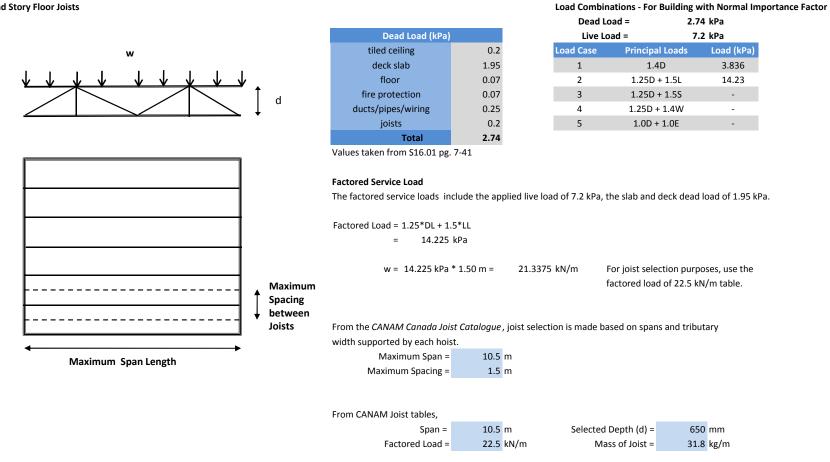
Dead loads of Roof System		
Modified Bitumen Cap and Base	0.27	kPa
6 mm Protection Board	0.01	kPa
100 mm Rigid Insulation	0.07	kPa
12.5 mm Exterior Grade Gypsum Board Sheathing	0.08	kPa
Vapour Retarder	0.01	kPa
12.7 mm Gypsum Board	0.01	kPa
Metal Deck	0.015	kPa
Fire Protection	0.07	kPa
Ducts/Pipes/Wiring	0.25	kPa
Structural Steel	0.25	kPa
Joists	0.2	kPa
Total	1.235	kPa

Load Combinations - For Building with Normal Importance Factor

Dead	Load = 1.235	kPa	Snow Load :	9.04 kPa
Live	Load = 1	kPa	Wind Load =	2.18 kPa
Load Case	Principal Loads	Load (kPa)		
1	1.4D	1.729		
2	1.25D + 1.5L+0.4Wor 0.55	7.56		
3	1.25D + 1.5S +0.4W	15.98		Max Load
4	1.25D + 1.4W+0.5S	9.12		15.98 kPa
5	1.0D + 1.0E+0.5L+0.25S	3.495		

Linear Load

=


= 15.98 kPa * 1.30 m

20.77 kN/m

From CANAM Joist tables,

	Span =	7.5	m	Select	ed Depth (d) =	650	mm
	Factored Load =	22.5	kN/m		Mass of Joist =	31.8	kg/
Area	Span (m)	Number	Joist	Joist Mass	Load at End		
Aicu	Span (m)	of Joists	Spacing(m)	(kg)	of Joist (kN)		
1D	7.5	5	1.30	1192.5	84.38		

Second Story Floor Joists

Refer to Floor Section Layout for Areas

Area	Span (m)	Number of Joists	Joist Spacing(m)	Joist Mass (kg)	Load at End of Joist (kN)
1D	7.5	4	1.56	954	84.38
2B	8.225	4	1.34	1046.22	92.53
2C	10.5	4	1.34	1335.6	118.13
2E	9.925	4	1.34	1262.46	111.66
3B	8.225	5	1.48	1307.775	92.53
3C	10.5	5	1.48	1669.5	118.13
3E	9.925	5	1.48	1578.075	111.66
4B	8.225	5	1.5	1307.775	92.53
4C	10.5	5	1.5	1669.5	118.13
4E	9.925	5	1.5	1578.075	111.66
5B	14.095	5	1.48	2241.105	158.57
5C	10.5	5	1.48	1669.5	118.13
5E	9.925	5	1.48	1578.075	111.66
				20505.435	

Total Joist = 644.825 m

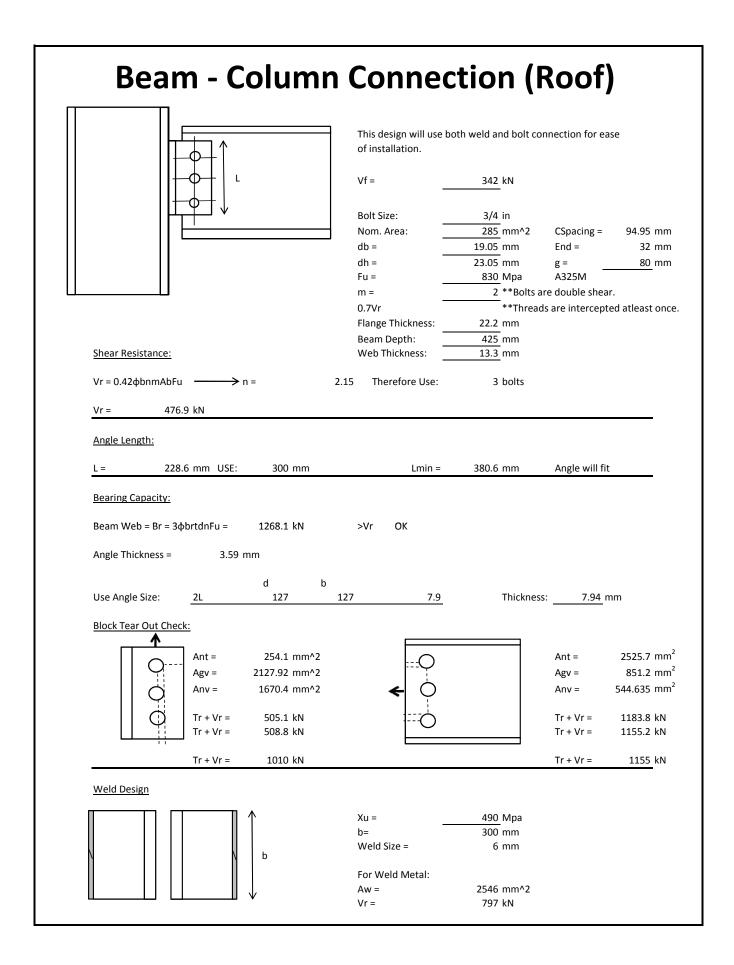
Steel Joist Floor Vibration Check

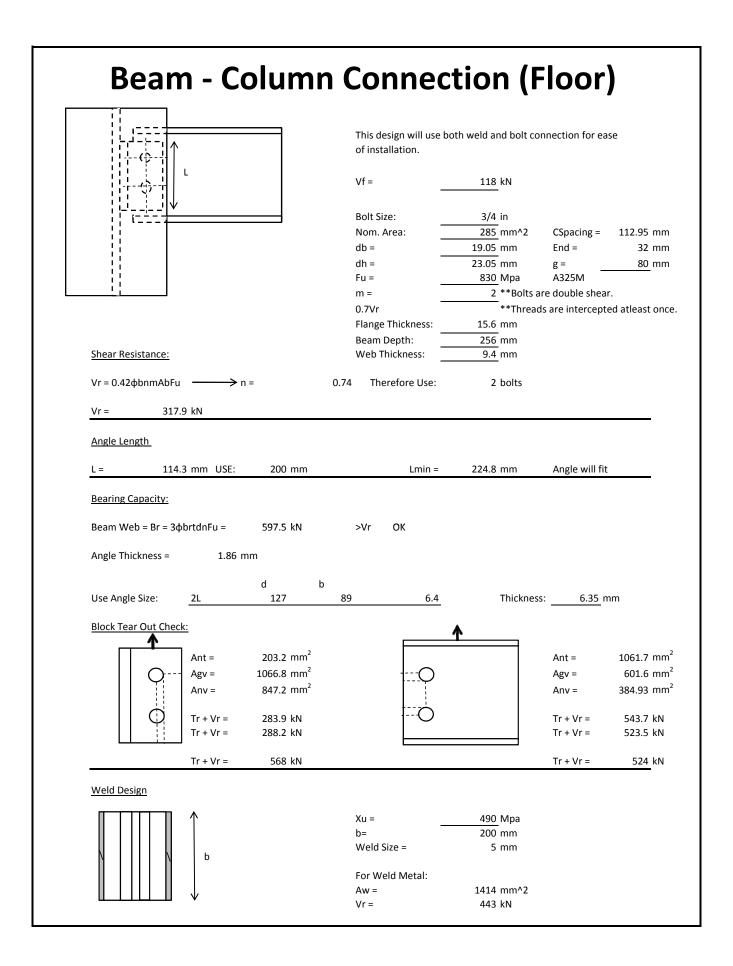
Joist Selectio	on Character	istics	
Mass	31.8	kg/m	
% *	72	%	
Span	10	m	
* Percent to	produce a a	deflection v	alue of span/360
Load			
w	22.2	kN/m	

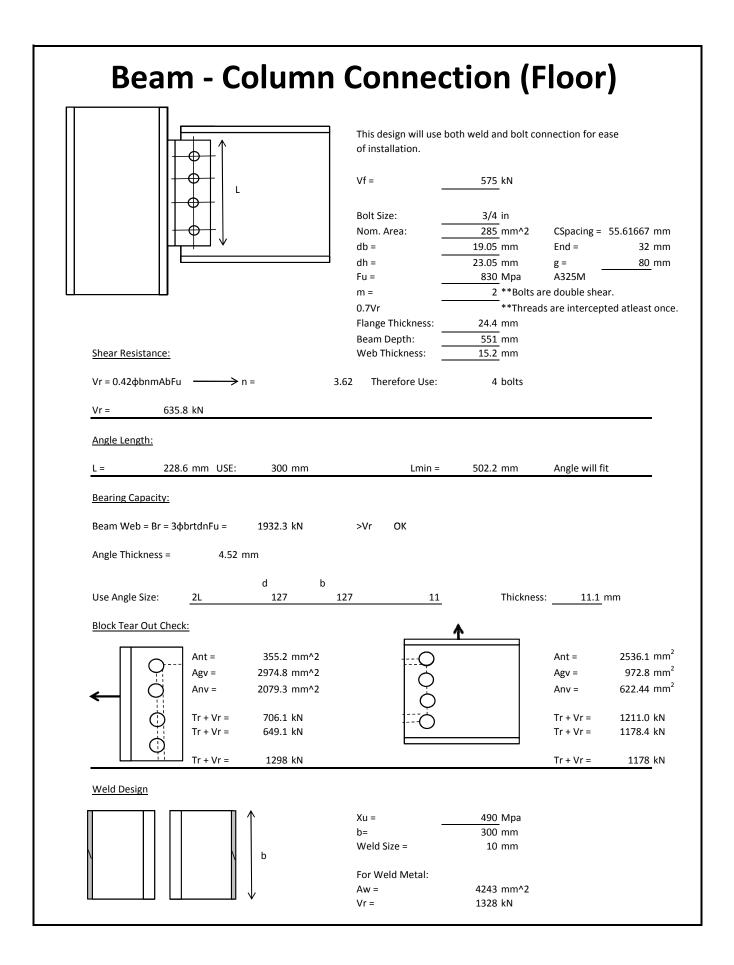
Approximate Moment of Intertia of the Joist can be calculated as

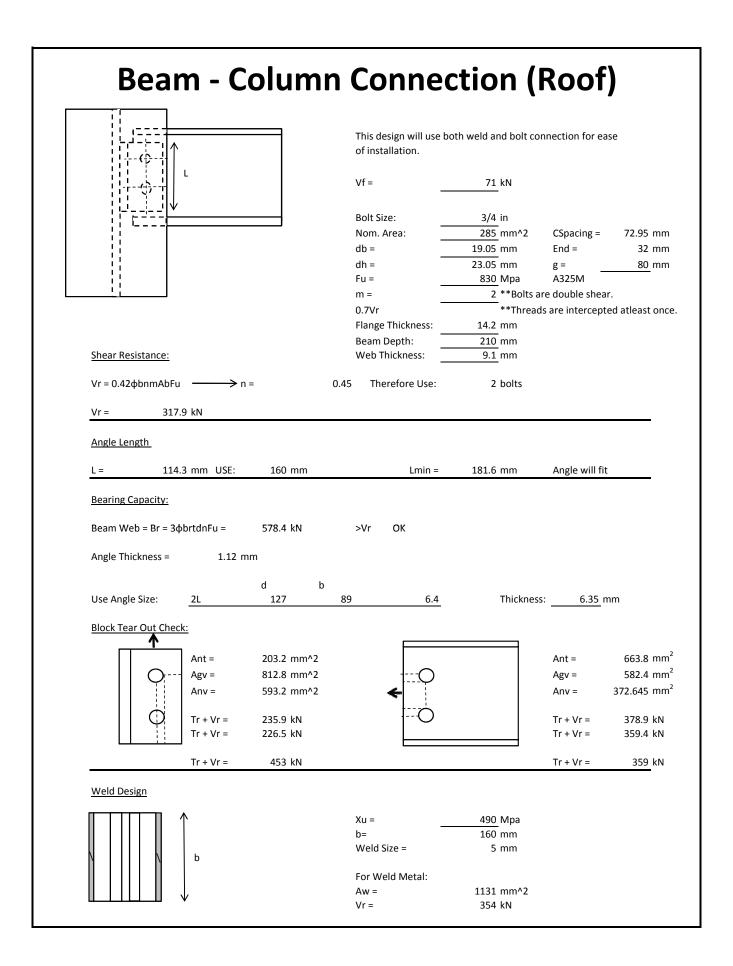
 $I_{\text{joist}} = 23,436 \text{ x Percentage x w/1.5 x (span)}^3$ $I_{\text{joist}} = 249734016 \text{ mm}^4$

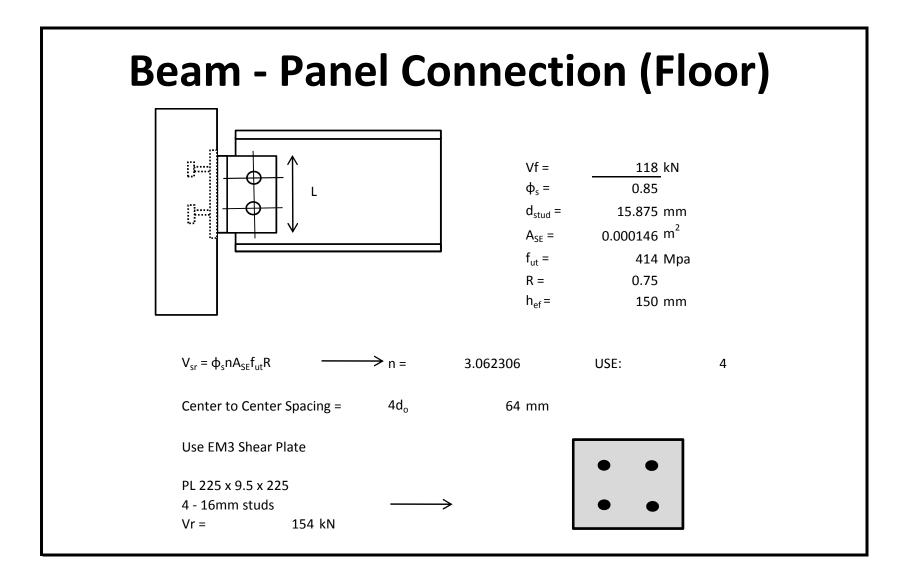

The center of gravity of the joist can be assumed to be at mid depth

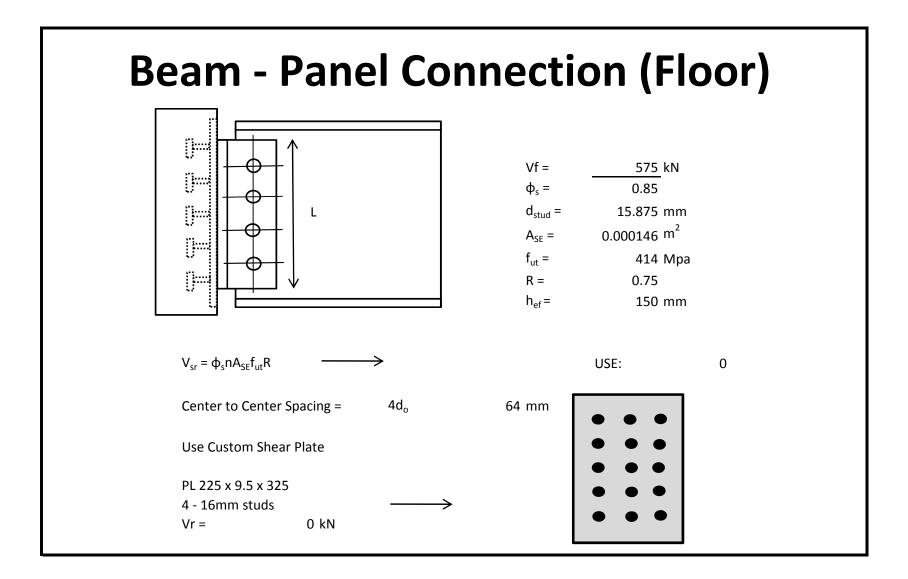

 $\mathbf{A}_{\text{joist chords}} = \mathbf{I}_{\text{joist}} / (\text{depth/2})^2$ $\mathbf{A}_{\text{joist chords}} = 2364.35 \text{ mm}^2$

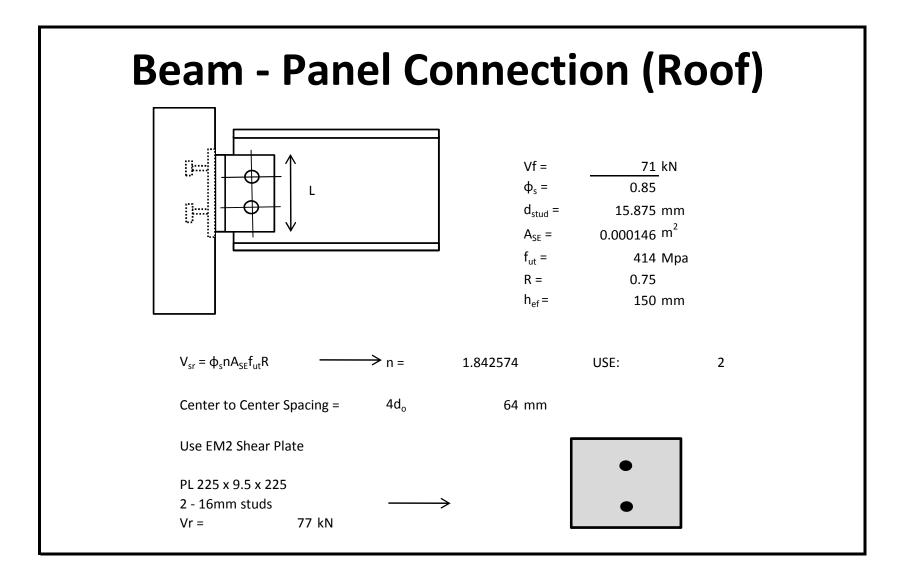

Floor Joist	Schedule						
Mark	Depth (mm)	Specified Dead Load (kPa)	Specified Live Load (kPa)	Specified Snow Load (kPa)	Specified Wind Load (kPa)	Δ _{live} = span/320 (mm)	Suggest I _x for Vibration (mm ⁴)
1D	650	2.74	7.2	-	-	23.4	1.0536E+08
2B	650	2.74	7.2	-	-	25.7	1.3896E+08
2C	650	2.74	7.2	-	-	32.8	2.8910E+08
2E	650	2.74	7.2	-	-	31.0	2.4416E+08
3B	650	2.74	7.2	-	-	25.7	1.3896E+08
3C	650	2.74	7.2	-	-	32.8	2.8910E+08
3E	650	2.74	7.2	-	-	31.0	2.4416E+08
4B	650	2.74	7.2	-	-	25.7	1.3896E+08
4C	650	2.74	7.2	-	-	32.8	2.8910E+08
4E	650	2.74	7.2	-	-	31.0	2.4416E+08
6A	650	2.74	7.2	-	-	44.0	6.9932E+08
5B	650	2.74	7.2	-	-	25.7	1.3896E+08
5C	650	2.74	7.2	-	-	32.8	2.8910E+08
5E	650	2.74	7.2	-	-	31.0	2.4416E+08

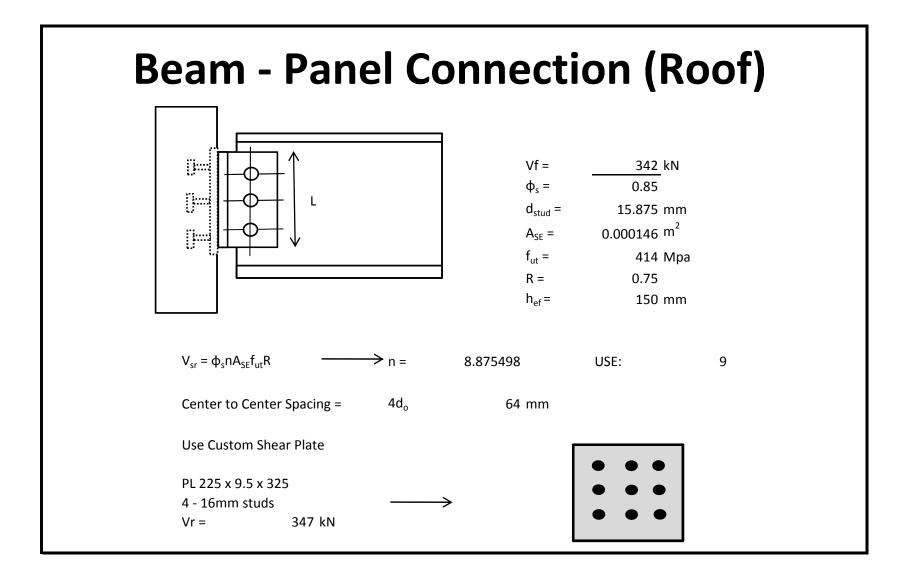

of Joists Scl	hedule					
Mark	Depth (mm)	Specified Dead Load (kPa)	Specified Live Load (kPa)	Specified Snow Load (kPa)	Specified Wind Load (kPa)	Δ _{live} = span/240 (mm)
1D	650	1.225	-	4.32	2.3	34.3
2B	650	1.225	-	4.32	2.3	43.8
2C	650	1.225	-	4.32	2.3	41.4
2E	650	1.225	-	4.32	2.3	34.3
3B	650	1.225	-	4.32	2.3	43.8
3C	650	1.225	-	4.32	2.3	41.4
3E	650	1.225	-	4.32	2.3	34.3
4B	650	1.225	-	4.32	2.3	43.8
4C	650	1.225	-	4.32	2.3	41.4
4E	650	1.225	-	4.32	2.3	58.7
6A	650	1.225	-	4.32	2.3	34.3
5B	650	1.225	-	4.32	2.3	43.8
5C	650	1.225	-	4.32	2.3	41.4
5E	650	1.225	-	4.32	2.3	0.0

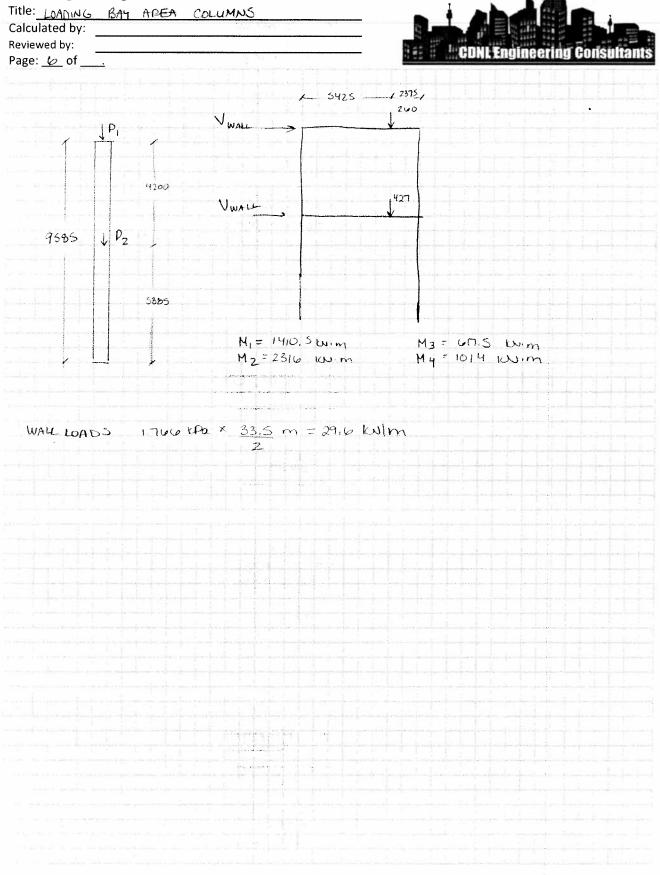

itle: <u>STEEL DECK DIAPHRAGMS</u> alculated by: DP	
aviawed by:	
age: of	CDNL Engineering Consultan
-0	
LATERAL LOAD (?)	
	WIND LOND = 1.766 K
	9= 9,585× 1.766 × 1.4
, 33.5 m	- 2371WIM
	-> LOADS TALES AT
	ROOF & ILOOR
	THEREFORE FRONDE
	TWO DIA PHRAGM S
and a stand of the second s	
	a har a star
	· · · · · · · · · · · · · · · · · · ·
	and and a standard and a standard and and a standard and a standard a standard a standard a standard a standard
MAX WIND LOAD ON WALL THE SAME ON EDGE 4 IN TER	517
DOF	
JOIST SPACING : ISOOM M	
DECK PROFILE : P-36/S	
SUPPORT FASTENERS 19mm PUDDLE WELDS (34/7) PAT	TEEN
SIDE LAP FASTELIERS : BUTTON PUNCH (2150 mm (12))	n.)
FROM CANAM DIAPHRAGM GUDE	
FACTORED PESSANCE (Qr) = 11.4 WIM	
RIGIDITY FACTORS (G') - 12.2×103 [N/m	
	TOTAL RESISTANCE
	- 331.9 + 1477,41N
TOTAL RESISTANCE = 11.4 KN/m × 335 = 381.9 W	= [85910]
NEED 1693 - 11.4 KV/m : 553 W/m REQUILED	RESISIANCE FOR
NEED 1073 - 11 / KVIM : 3-3 WIM REQUILED	LATTERAL LONDS MET
STEEL FLOOR DIAPHRAGM WITH CONCRETE	LINCAUL LONDA STON
TOIST SPACING = 1500 mm	
XECI PROFILE P3615	
UPPOR FASTENERS . 19mm PUBLIE WELDS (3414) PATTERN.	and the first of the first of the start of t
DECL PROFILE - P3615 WARD FASTENERS - 19mm RIDDLE WELDS (344) PATTERN SIDE LAP FASTENERS : BUTTON PUNCH (2 600 mm (241) Rr = 44.1 WILM	











Memo	rial University ,	of Newfoundland	Project Structure: Load Filename: C:\DOCUME~1\WI	Key Design Results Project: Lawton's Drug Store Structure: Loading Area Rigid Frame Filename: C:\DOCUME~1\WILLETTE\DESKTOP\CDNL\LOADIN~1.TEL Engineer: D.Dalton			
. Sum	mary of Gov	verning Selected	Members for Each G	roup			
Member No.	Group Name	Steel Section	Governing Load Case/Comb	Governing Clause	Ratio	Pass/Fail Status	
8	Section 2	W460x144	Case 1,	Bending	0.97	Pass	
4	Section 1	W360x91	Case 1,	Bending	0.935	Pass	
6	Section 3	W360x162	Case 1,	Beam-column stability	0.903	Pass	
Code	e Details For	Governing Me	mbers for Each Group	1			
24	1 4			W260 100	W360x91		
-	nber: 4		S-FRAME Section is		W360x91		
Men	nber is part of g	roup: Section 1	Current Section is		W360x91	y↓ ↑ 16.4	
Men Note	nber is part of g e: Neglecting: a	xial<1.0 kN, shear<	Current Section is V (1.0 kN, moment<1.0 kNm	W360x91	W360x91	$ \begin{array}{c} \underbrace{4y \\ \hline 16.4 \\ \hline x \end{array} $	
Men Note Note	nber is part of g e: Neglecting: a e: Member in br	xial<1.0 kN, shear<	Current Section is N 1.0 kN, moment<1.0 kNm Angle Gamma is -90.0 de	W360x91	*		
Men Note Note	nber is part of g e: Neglecting: a e: Member in br Load Case 1 (xial<1.0 kN, shear< caced frame(s).	Current Section is V 1.0 kN, moment<1.0 kNm Angle Gamma is -90.0 de ession)	W360x91	*	× -9.500	

Note: N	Iember in braced frame(s). Angle Gamma is -90.0 degrees	→<-9.500
	ad Case 1 (Bending + Compression)	
	Section classification (f_y =350 MPa); Section Class = 1	Clause 11
	Governing geometrical slenderness ratio $\frac{k_y L/r_y}{200} = \frac{38}{200} =$ 0.190.19	<u>Clause 10.4.2.1</u>
	Axial Load - (kN)	
	0.00 2.38 (m) -160.8	
	Factored Compressive Resistance Check n=1.34; $\lambda_{\bowtie}=0.509$ $\frac{C_{f}}{C_{ry}}=\frac{C_{f}}{\phi^{\bigvee}F_{y}(1+\lambda^{\boxplus n})^{-1/n}}=\frac{C_{f}}{\phi^{\bigvee}(313 \text{ MPa})}=\frac{161}{3263}=0.04$	<u>Clause 13.3.1</u> 9
	Strong Axis Shear - (kN) 256.7 0.00 2.38 (m)	
	Strong axis shear strength check $A_w = 3354 \text{ mm}^2$; $\frac{V_{fx}}{\phi A_w F_s} = \frac{V_{fx}}{\phi A_w 0.66F_y} = \frac{257}{697} = 0.36$	<u>Clause 13.4.1.1(a)</u> 8
	Strong Axis Moment - (kN-m)	
	Bending Stability Check $L_u=2.38 \text{ m}; \omega_{\mathbb{B}}=2.010;$ $\frac{M_{fx}}{M_{rx}}=\frac{495}{529}=0.93$	<u>Clause 13.6(a)</u>
	Axial Compression and Bending cross-sectional Strength Check $\omega_{\Box x}=0.51; U_{1x}=1.00;$ $\frac{C_{f}}{\phi A F_{y}} + \frac{0.85 U_{1x} M_{fx}}{\phi Z_{x} F_{y}} = 0.83$	<u>Clause 13.8.2(a)</u> 9
	Axial Compression and Bending overall member Strength Check C_{f} $0.85 U_{1x} M_{fx}$ 0.44 $\omega_{\bigcirc x} = 0.51; U_{1x} = 0.51;$ $C_{rx} + \frac{0.85 U_{1x} M_{fx}}{\phi Z_{x} F_{y}} = 0.44$	<u>Clause 13.8.2(b)</u>
Design Co	ode: CAN/CSA S16-01	C STEEL

Design Code: CAN/CSA S16-01 Steel Table : Canadian 2005 (CISC) Analysis Program: S-FRAME (Linear static analysis) **S-STEEL** *Version 9.02* © Copyright Softek Services Ltd. 1995-2009

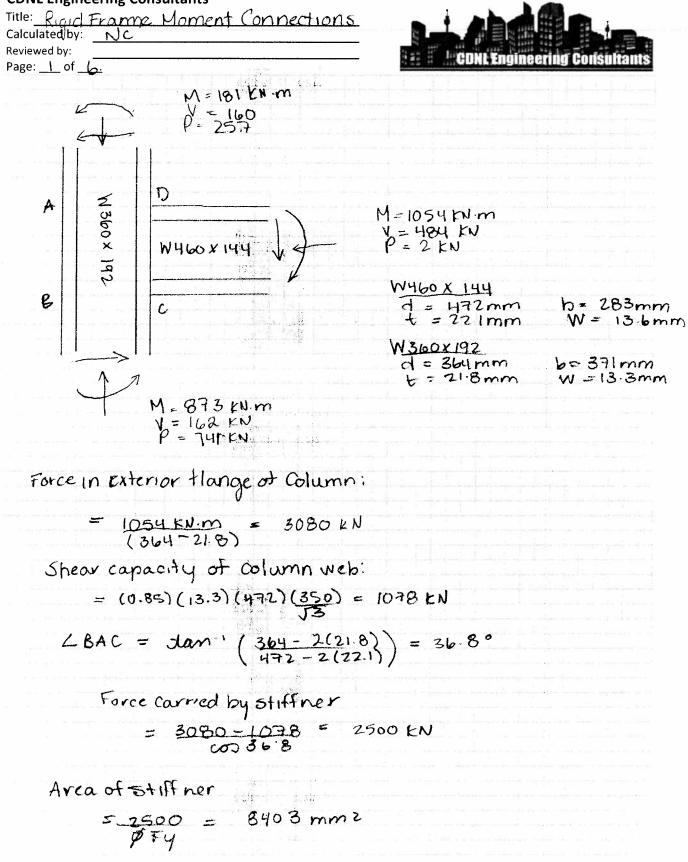
lemorial University of Newfoundland	Key Design Re	esults
,		Pag Date:01/04/2
Axial Compression and Bending lateral t $\omega_{\bigcirc x}=0.51; U_{1x}=1.00;$	orsional buckling strength check $\frac{C_f}{C_{ry}} + \frac{0.85 \text{ U}_{1x} \text{ M}_{fx}}{\text{M}_{rx}} =$	0.844
Member: 6 Member is part of group: Section 3 Note: Neglecting: axial<1.0 kN, shear<1.0	Angle Gamma is -90.0 degrees	W360x162
Section classification $(f_y=350 \text{ MPa});$ Governing geometrical slenderness ratio $k_x=1.00; k_y=1.00; k_xL/r_x=34.0;$	Section Class = $\frac{k_v L/r_v}{200} = \frac{57}{200} =$	2 <u>Clause 11</u> 0.283
Axial Load - (kN) 0.00 -740.7	5.39	9 (m)
Factored Compressive Resistance Check $n=1.34; \lambda_{\square}=0.755$ $\frac{C}{C_1}$ Strong Axis Shear - (kN)	$\frac{C_{f}}{r_{y}} = \frac{C_{f}}{\phi^{\emptyset} F_{y}(1+\lambda^{\mathbb{B}n})^{-1/n}} = \frac{C_{f}}{\phi^{\emptyset} (263 \text{ MPa})} = \frac{741}{4867} =$	0.152
0.00-162.2Strong axis shear strength check $A_w = 4841 \text{ mm}^2$;Strong Axis Moment - (kN-m)	V. V. 162	9 (m) 0.161 <u>Clause 13.4.1.1(a)</u>
873,4 0.00 Bending Stability Check		9 (m) Clause 13.6(a)
$L_u=5.39 \text{ m}; \omega_{\mathbb{B}}=1.750;$ Axial Compression and Bending cross-set		0.883 Clause 13.8.2(a)
$ \begin{split} & \omega_{\boxtimes x} = 0.60; \ U_{1x} = 1.00; \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\frac{\frac{C_{f}}{\phi - A F_{y}} + \frac{0.85 U_{1x} M_{fx}}{\phi - Z_{x} F_{y}} =}{\text{member Strength Check}}$ $\frac{C_{f}}{C_{rx}} + \frac{0.85 U_{1x} M_{fx}}{\phi - Z_{x} F_{y}} =$	Clause 13.8.2(b)
Axial Compression and Bending latera $\omega_{mx}=0.60; U_{1x}=1.00;$	al torsional buckling strength check	Clause 13.8.2(c)

Design Code: CAN/CSA S16-01 Steel Table : Canadian 2005 (CISC) Analysis Program: S-FRAME (Linear static analysis) **S-STEEL** Version 9.02 © Copyright Softek Services Ltd. 1995-2009

Memorial University of Newfoundland	Key Design Re	esults	
,			Page: 3 Date:01/04/2010
Member: 8 Member is part of group: Section 2 Note: Neglecting: axial<1.0 kN, shear<1	Angle Gamma is -90.0 degrees	W460x144	22.1 → x ⁻ 13.6
Section classification $(f_y=350 \text{ MPa});$	Section Class =	1 <u>Clause 11</u>	
Governing geometrical slenderness ratio $k_x=1.00; k_y=1.00; k_xL/r_x=12.0;$	$\frac{k_y L/r_y}{200} = \frac{35}{200} =$	0.176	<u>2.1</u>
Axial Load - (kN)	2.38	3 (m)	
Factored Compressive Resistance Check n=1.34; $\lambda \ge 0.469$	$\frac{C_{f}}{C_{ry}} = \frac{C_{f}}{\phi^{\emptyset} F_{y}(1+\lambda^{\otimes n})^{-1/n}} = \frac{C_{f}}{\phi^{\emptyset} (319 \text{ MPa})} = \frac{1}{5285} =$	0.000	L
Strong Axis Shear - (kN) 484.0 0.00	2.38	B (m)	
Strong axis shear strength check $A_w = 6419 \text{ mm}^2$; Strong Axis Moment - (kN-m)	$\frac{V_{fx}}{\phi A_w F_s} = \frac{V_{fx}}{\phi A_w 0.66F_y} = \frac{484}{1335} =$	0.363	<u>.1(a)</u>
Strong Axis Moment - (KIV-III)	2.38	3.9 3 (m)	
Bending Stability Check	M. 1054	<u>Clause 13.6(</u>	<u>a)</u>
L _u =2.38 m; ω _B =1.848;	$\frac{M_{fx}}{M_{rx}} = \frac{1054}{1087} =$	0.970	
Axial Compression and Bending cross-s $\omega_{CTx}=0.56; U_{1x}=1.00;$	ectional Strength Check $\frac{C_f}{\phi ~~A~F_y} + \frac{0.85~U_{1x}~M_{fx}}{\phi ~~Z_x~F_y} =$	0.825	<u>2(a)</u>
Axial Compression and Bending overall $\omega_{CTX}=0.56; U_{1X}=0.56;$	member Strength Check $\frac{C_f}{C_{rx}} + \frac{0.85 \; U_{1x} M_{fx}}{\phi} =$	0.465	<u>2(b)</u>
Axial Compression and Bending lateral $\omega_{CTx}=0.56; U_{1x}=1.00;$	torsional buckling strength check $\frac{C_f}{C_{ry}} + \frac{0.85 \text{ U}_{1x} \text{ M}_{fx}}{M_{rx}} =$	0.825	<u>?(c)</u>

3. Summary of Governing Load Cases for Each Selected Member

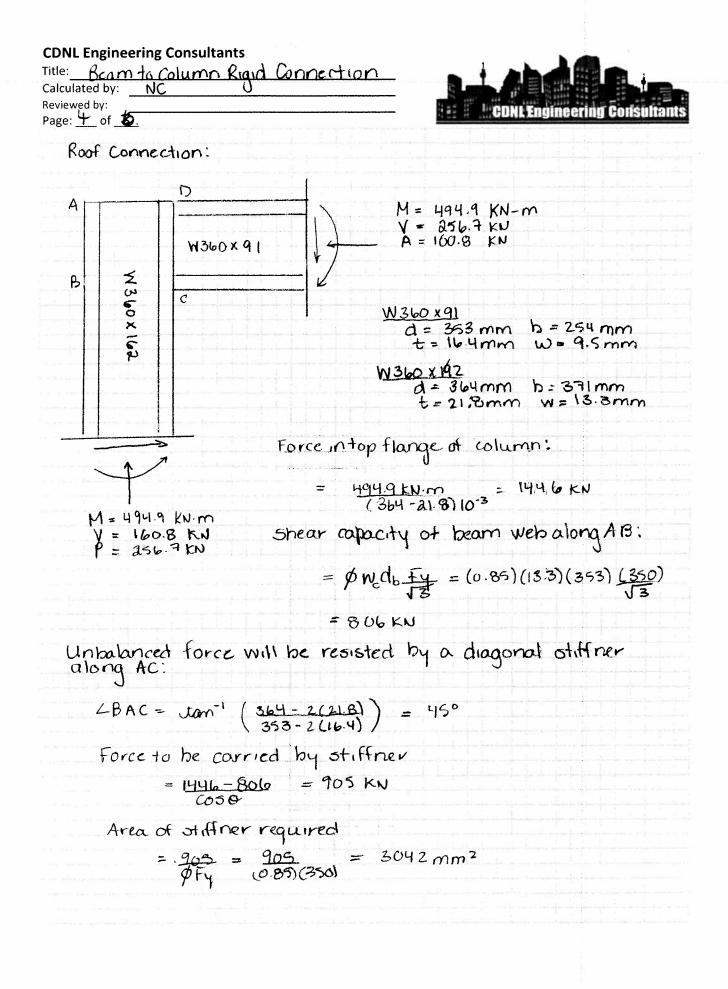
Member No.	Group Name	Steel Section	Governing Load Case/Comb	Governing Clause	Ratio	Pass/Fail Status
8	Section 2	W460x144	Case 1,	Bending	0.97	Pass
7	Section 2	W460x144	Case 1,	Slenderness	0.402	Pass
4	Section 1	W360x91	Case 1,	Bending	0.935	Pass
3	Section 1	W360x91	Case 1,	Slenderness	0.436	Pass


Design Code: CAN/CSA S16-01 Steel Table : Canadian 2005 (CISC) Analysis Program: S-FRAME (Linear static analysis) S-STEEL Version 9.02 © Copyright Softek Services Ltd. 1995-2009

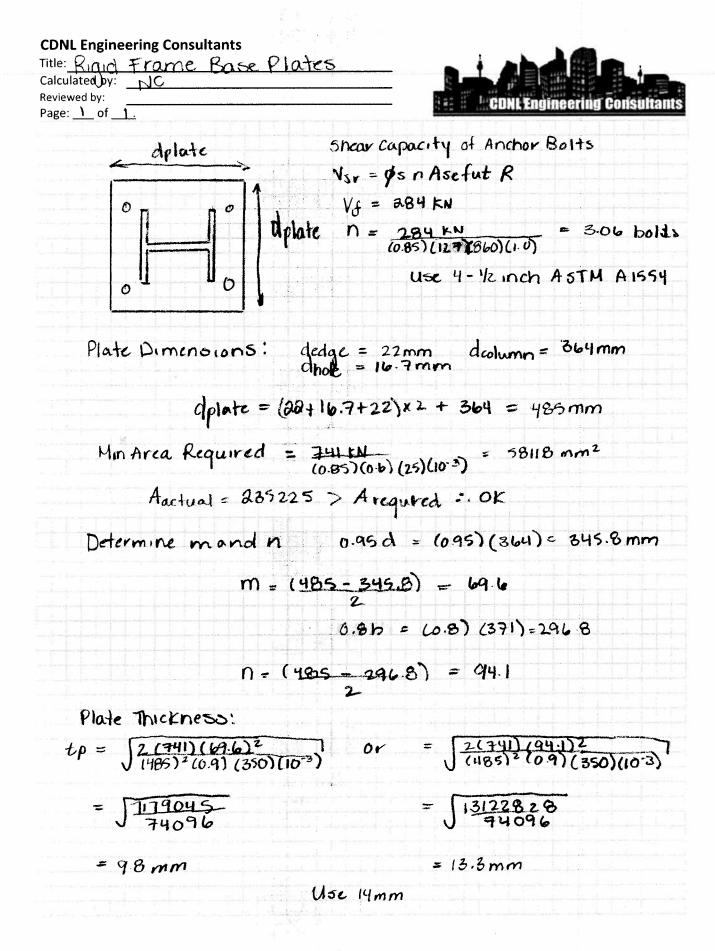
Memorial University of Newfoundland			Key D	Key Design Results				
	,					Date:	Page: 4 01/04/2010	
Member No.	Group Name	Steel Section	Governing Load Case/Comb	Governing Clause	Ratio	Pass/Fail Status		
6	Section 3	W360x162	Case 1,	Beam-column stability	0.903	Pass		
1	Section 3	W360x162	Case 1,	Beam-tension strength	0.671	Pass		
5	Section 3	W360x162	Case 1,	Bending	0.5	Pass	1	
2	Section 3	W360x162	Case 1,	Bending	0.254	Pass]	

4. Summary of Quantities

	Steel Section	Length (m)	Weight (kg)	Surface Area (m2)	Cost \$
By Section					
	W360x162	19.170	3106	42	0.00
	W360x91	7.800	710	13	0.00
	W460x144	7.800	1123	16	0.00
	Totals=	35	4939	71	0.00



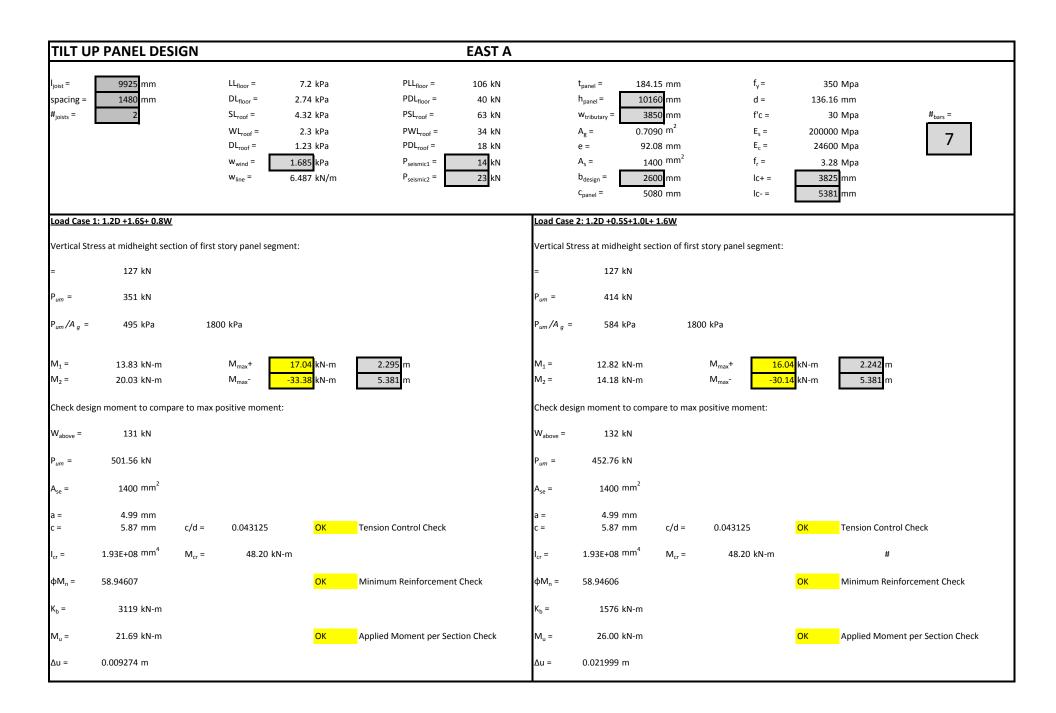
10 M


lculated by:	CONLEngineering Consultan
Stiff Width:	
= 371 - 13.3 = 357.	7mm => 350mm
	2PL 25 × 1955 Either Side
= 8403 = 24 mm 350	2PL 25 × 1953 Either Side
Weld required	
$L = (472 - 2(721))$ $\frac{1}{100368}$	1 = 534 mm
$L_{Wcld} = \frac{2500}{1.56} = 160$	σ2 mm
Use 10mm weld on	both sides of Plateos
Side Flange of Column	n.
V=484 KN	
Vrweld = 0.778	
Lwid = 472 - 2(22.1)c	427.Bmm
Vrweld = (0.778)(427.8	x = 332.8 x = 666 k N
Beam Flange Force BC:	
$= \frac{1054}{(472-2(22.1))} =$	2464 KN
Bearing Strength Br = (0.8)(13.3)(22.1 +	(10)(21.8))(350) = 894KN - Go
$B_{F} = (45)(0.8)(13.3)^{3}$	
Unbalanced Force	
2464 - 894 + 1 = 14	571 KN

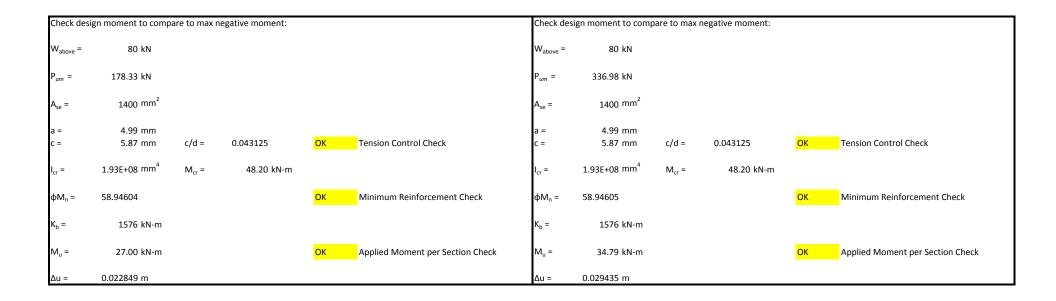
CDNL Engineering Consultants Title: Rigid Frame Moment Connections Calculated by: NC Reviewed by: Page: <u>3</u> of <u>5</u> **CONL Engineering Consulta** Area of stift. $= \frac{1571}{(053)(350)} = 5281 \text{ mm}^2$ USE 2 PL 20X2 10 5600 > 5201 Weld Reg. for stiff = 1571 = 1007mm Use 250 mm Weld on both sides 0 8 2) ZPL 20 × 175×250 N/250 mm Weld (10mm) Ø 22PL 20 X 175X 425 W/ H25mm Weld (10mm) (4) (4) 425 mm weld both sides

CDNL Engineering Consultants Title: Beam to Column Connection Calculated by Reviewed by: **CDNL Engineering** Page: D of b. Max stiff width: = 371-13.3 = 357.7 mm = 350 mm Required Thickness $= \frac{3042 \text{ mm}^2}{350 \text{ mm}} = 8.69 \text{ Use } 2 \text{ PL} \frac{10 \text{ x } 175 \text{ on}}{61 \text{ ther side}}$ either side Weld Required to covery unbalanced force $L = \frac{(353 - 2(16.4))}{(353 - 2(16.4))} = 453mm$ Using 10mm weld with E49XX $V_{r} = 0.67(0.67)(10)(1)(490) = 1.56 \text{KM/mm}$ L weld = 905 = 508.mmUse 10mm weld on both sides of each plate. Side Flange of Column. V= 256.7 KN $V_{\text{rweld}} = (0.67)(0.67)(5)(490) = 0.778 \text{ KN/mm}$ Lweld = 393-2(16.4) = 320.2 Vrweld = (0.7781 (320.2) = 249 EN X2=499KN > 256.7 Beam Flange force along BC: = <u>494.9 ku.m</u> = 1546 kN (333-2(164) Bearing Strength Br = (0.8) (13.3) (16.4+(10)(01.0)) (350) = 873KN - Governs Br = (1.45)(0.8)(3.3)2 J (350) 2200000) = 1717 KN Unbalaced Force Carried = 1546 - 873 + 160.8 = 753 KN 2

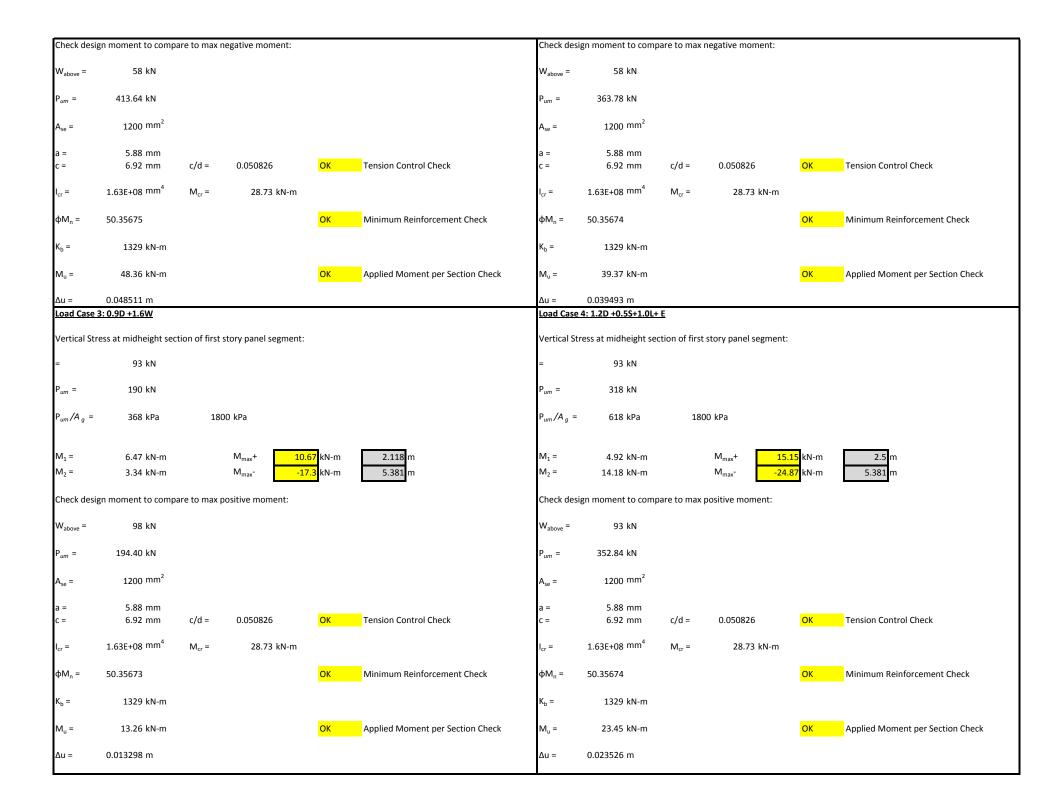
CDNL Engineering Consultants Title: <u>Beam to Column Rigid Connection</u> Calculated by: <u>NC</u> Reviewed by: Page: _____ of ____. CONLEngineering Consulta Area of styffner $= \frac{753}{(0.85)(350)} = 2531$ mm² USE 2 PLZOX 250 10000 >2581 Weld Required for stiffner Use 125mm Weldson both sides of 140mm stiffners $=\frac{753}{1.56}=483\,mm$ Same stiff along AD $\frac{b}{t} = \frac{200}{550} = 10.69 > \frac{140}{20} = 7$ () and (3) O PL. 20 × 140 W/ 125 mm welds (10mm) P @ PL 20X175 W/ 175mm welds (10mm) 3 (4) 520mm Weld (5mm) All both sides

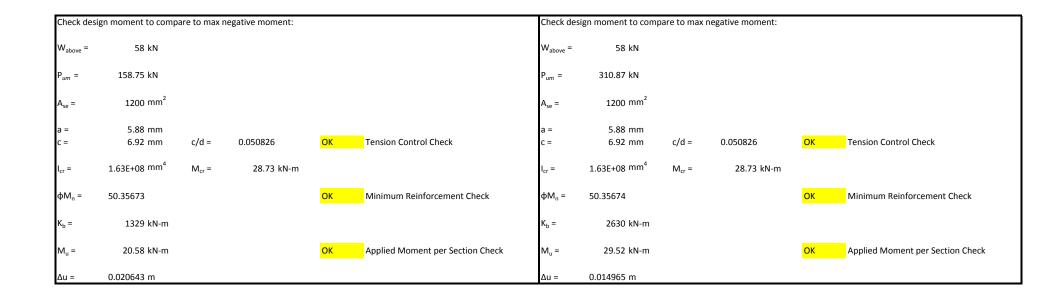


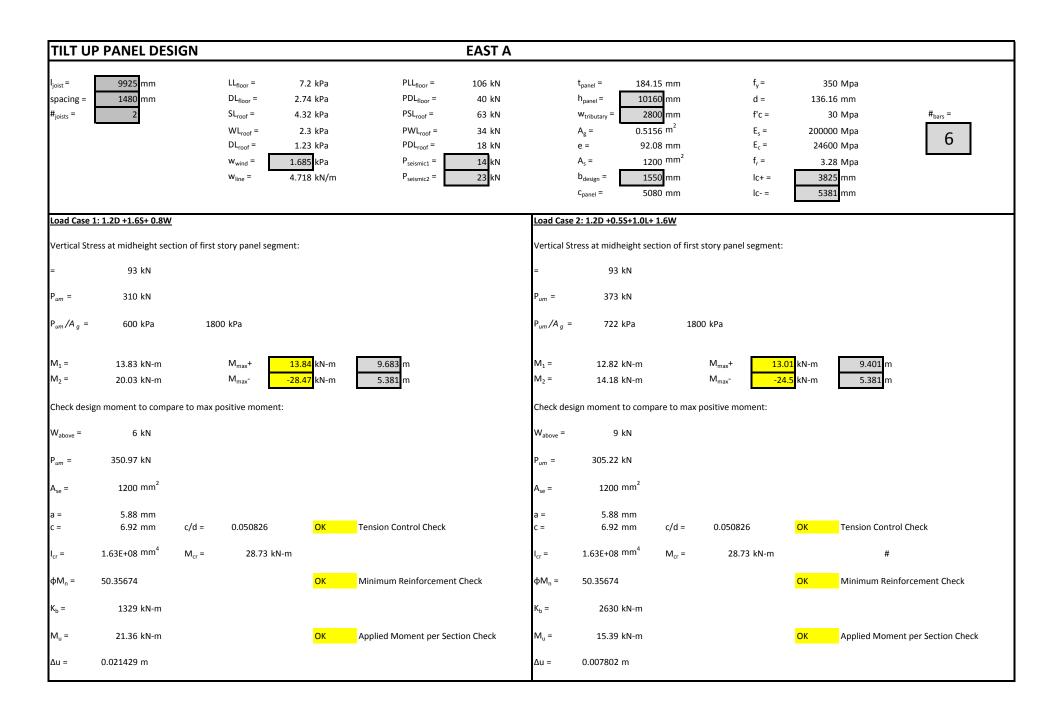
.

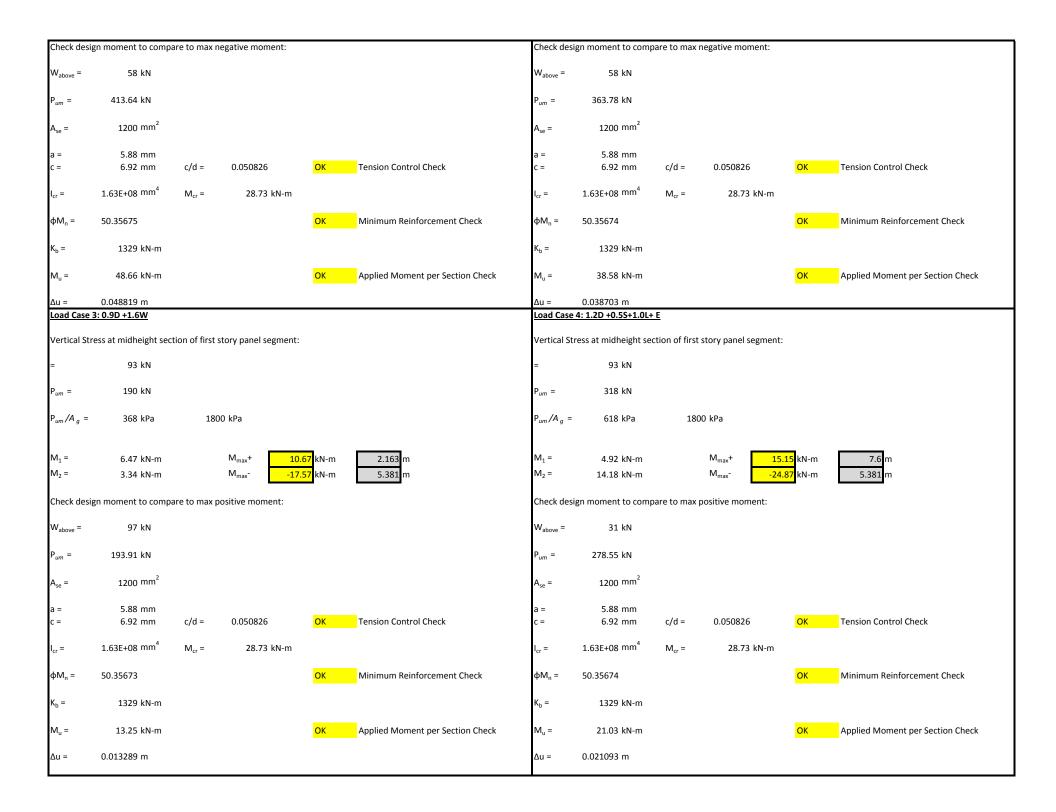

Titl-Up Panel Schedule									
Sym/Type	Sketch	Description	Quantity	Dimensions					
		Typical window panel used on North, East and West elevations of building. These tilt- up sections are approximately the same size but the number of cut outs vary (0-3).	6	9500mm x 9500mm					
₿		Typical door panel used on North elevation for rear stairway access.	I	8500mm x 9500mm					
C		Typical window or door panel similar to Type A. However, these panels are slightly smaller.	3	(5900-7000)mm x 9500mn					
D		Typical wall panel used on West elevation of building. Very similar to Type A. However, a Type D window is located on a exterior side of the panel.	I	9500mm x 9500mm					
		Typical wall panel used for receiving area on North and East elevation of building.	3	7800mm x (4200-6000)mn					

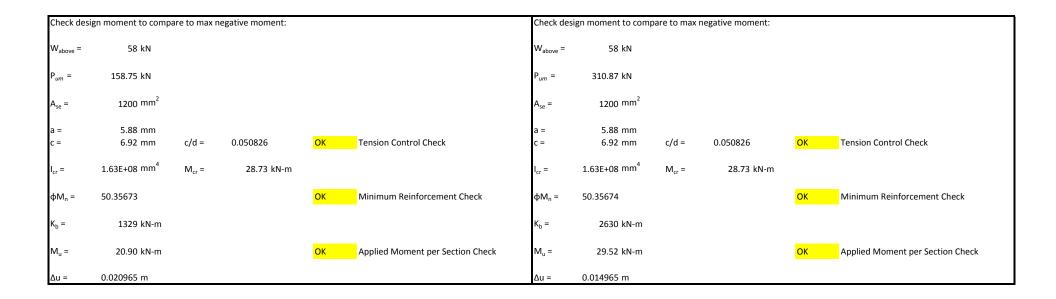
₽	Typical wall panel used for receiving area. Similar to Panel Type E but has door and garage door opening.	I	7800mm x 6000mm
G	Typical main entrance panel used on South elevation.	2	8250-12800)mm × 2500mm
E	Typical main entrance panel used on South elevation.	Ι	13200mm × 11500mm
	Typical panel used on West elevation of building above large glass windows and awning.	I	8900mm × 9500mm

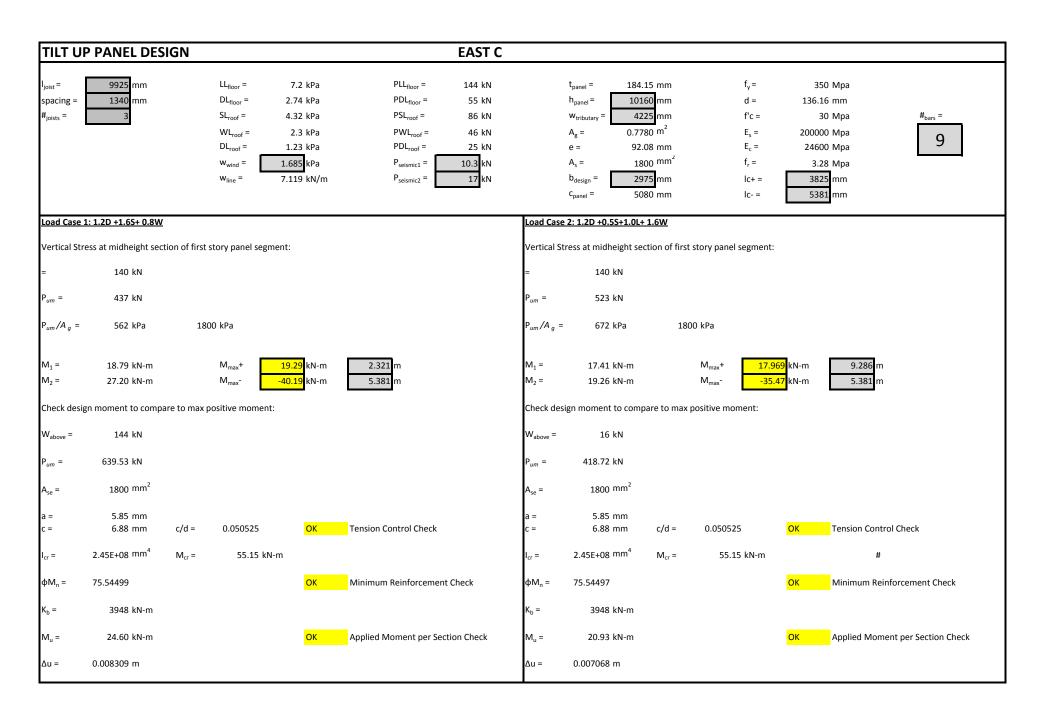

Wall	Direction	Length	Bar	Length/Face	# of	Total Length	Weight	Total Weight	
wan	Direction	(mm)	Count	(m)	Faces	(m)	(kN)	(Tonnes)	
		10080	64	645.12	2	1290.24	2025.68		
	Vertical	8000	22	176.00	2	352.00	552.64		
	Vertical	7080	2	14.16	2	28.32	44.46		
		6960	15	104.40	2	208.80	327.82		
West		4295	38	163.21	1	155.05	121.71	3.92	
	Horizontal	8673	38	329.57	1	313.10	245.78		
	HUHZUHLAI	11653	38	442.81	1	420.67	330.23		
		8375	38	318.25	1	302.34	237.33		
	Diagonal	1200	34	40.80	1	40.80	32.03		
		10080	40	403.20	2	806.40	1266.05		
	Vertical	4960	18	89.28	2	178.56	280.34		
	vertical	8910	5	44.55	2	89.10	139.89		
Couth		6960	32	222.72	2	445.44	699.34	2.40	
South		14974	38	569.01	1	540.56	424.34	3.40	
	Horizontal	8855	38	336.49	1	319.67	250.94		
		10819	38	411.12	1	390.57	306.59		
	Diagonal	1200	36	43.20	1	43.20	33.91		
		10080	72	725.76	2	1451.52	2278.89		
	Vertical	8000	31	248.00	2	496.00	778.72		
	Horizontal	9370	38	356.06	1	338.26	265.53		
East		8620	38	327.56	1	311.18	244.28	4.04	
		8320	38	316.16	1	300.35	235.78		
		6870	38	261.06	1	248.01	194.69		
	Diagonal	1200	40	48.00	1	48.00	37.68		
		10080	57	574.56	2	1149.12	1804.12		
	Vertical	8000	9	72.00	2	144.00	226.08		
		7800	4	31.20	2	62.40	97.97		
Nexth		4604	38	174.95	1	166.20	130.47	2.02	
North	11	8054	38	306.05	1	290.75	228.24	2.92	
	Horizontal	8620	38	327.56	1	311.18	244.28		
		5974	38	227.01	1	215.66	169.29		
	Diagonal	1200	18	21.60	1	21.60	16.96		
		5780	46	265.88	2	531.76	834.86		
	Vertical	3580		28.64	2	57.28	89.93		
		7536	19	143.18	1	136.02	106.78	4.55	
Loading Bay	Horizontal	7536	19	143.18	1	136.02	106.78	1.25	
		7788	19	147.97	1	140.57	110.35		
	Diagonal	1200	4		1	4.80	3.77		
		1					TOTAL	15.52	

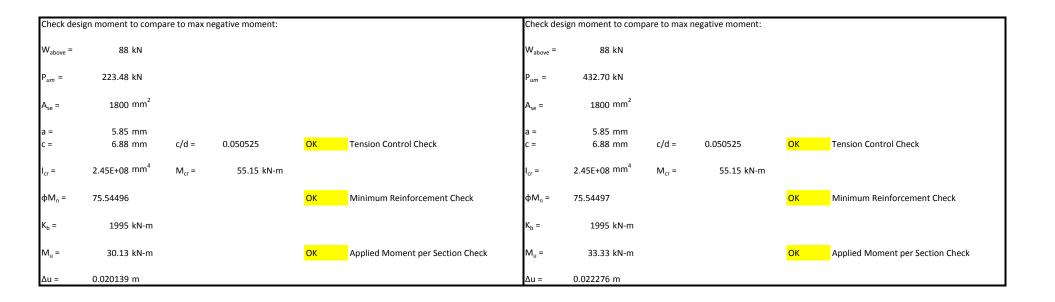


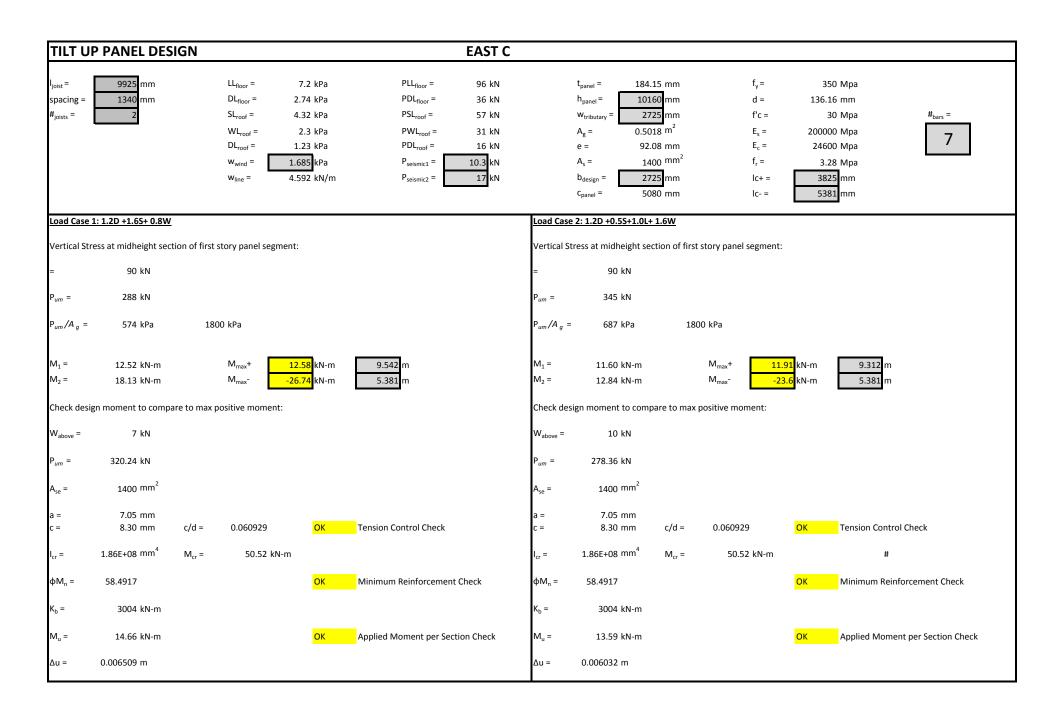

Check desig	gn moment to compa	re to max r	egative moment:			Check des	ign moment to comp	are to max r	negative moment:		
W _{above} =	80 kN					W _{above} =	80 kN				
P _{um} =	439.74 kN					P _{um} =	389.89 kN				
A _{se} =	1400 mm ²					A _{se} =	1400 mm ²				
a = c =	4.99 mm 5.87 mm	c/d =	0.043125	ОК	Tension Control Check	a = c =	4.99 mm 5.87 mm	c/d =	0.043125	ОК	Tension Control Check
I _{cr} =	1.93E+08 mm ⁴	M _{cr} =	48.20 kN-m			I _{cr} =	1.93E+08 mm ⁴	M _{cr} =	48.20 kN-m		
φM _n =	58.94606			<mark>ОК</mark>	Minimum Reinforcement Check	фМ _n =	58.94606			<mark>OK</mark>	Minimum Reinforcement Check
K _b =	1576 kN-m					K _b =	1576 kN-m				
M _u =	53.16 kN-m			ОК	Applied Moment per Section Check	M _u =	44.98 kN-m			ОК	Applied Moment per Section Check
Δu =	0.044978 m					Δu =	0.038056 m				
	3: 0.9D +1.6W						4: 1.2D +0.5S+1.0L+	E			
		ion of first	story panel segment:				ress at midheight sec		story panel segmen	t:	
=	127 kN					=	127 kN				
P _{um} =	221 kN					P _{um} =	360 kN				
$P_{um}/A_g =$	312 kPa	180)0 kPa			$P_{um}/A_g =$	508 kPa	180	0 kPa		
M ₁ = M ₂ =	6.47 kN-m 3.34 kN-m			<mark>67</mark> kN-m <mark>93</mark> kN-m	2.316 m 5.381 m	M ₁ = M ₂ =	4.92 kN-m 14.18 kN-m			<mark>5.15</mark> kN-m <mark>4.87</mark> kN-m	2.5 m 5.381 m
Check desig	gn moment to compa	re to max p	oositive moment:			Check des	ign moment to comp	are to max p	oositive moment:		
W _{above} =	131 kN					W _{above} =	128 kN				
P _{um} =	224.38 kN					P _{um} =	394.69 kN				
A _{se} =	1400 mm ²					A _{se} =	1400 mm ²				
a = c =	4.99 mm 5.87 mm	c/d =	0.043125	OK	Tension Control Check	a = c =	4.99 mm 5.87 mm	c/d =	0.043125	OK	Tension Control Check
I _{cr} =	1.93E+08 mm ⁴	M _{cr} =	48.20 kN-m			I _{cr} =	1.93E+08 mm ⁴	M _{cr} =	48.20 kN-m		
φM _n =	58.94604			ОК	Minimum Reinforcement Check	φM _n =	58.94606			ОК	Minimum Reinforcement Check
K _b =	1576 kN-m					K _b =	1576 kN-m				
M _u =	18.11 kN-m			ОК	Applied Moment per Section Check	M _u =	22.75 kN-m			ОК	Applied Moment per Section Check
Δu =	0.015321 m					Δu =	0.019245 m				

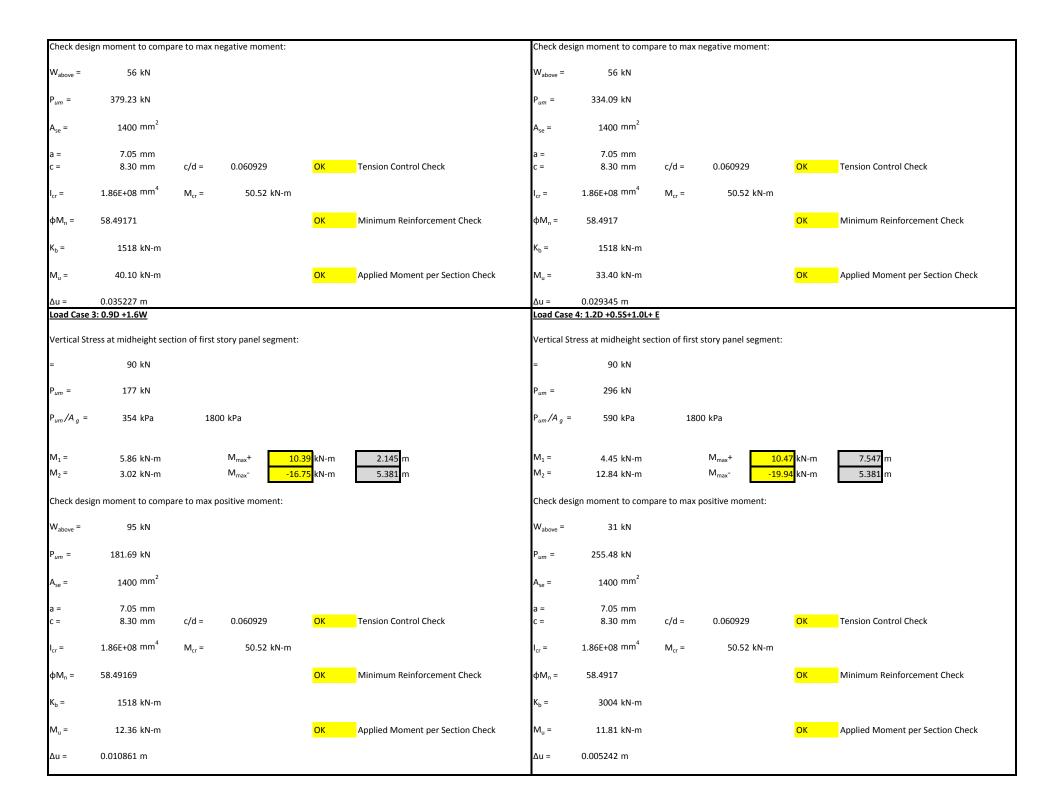


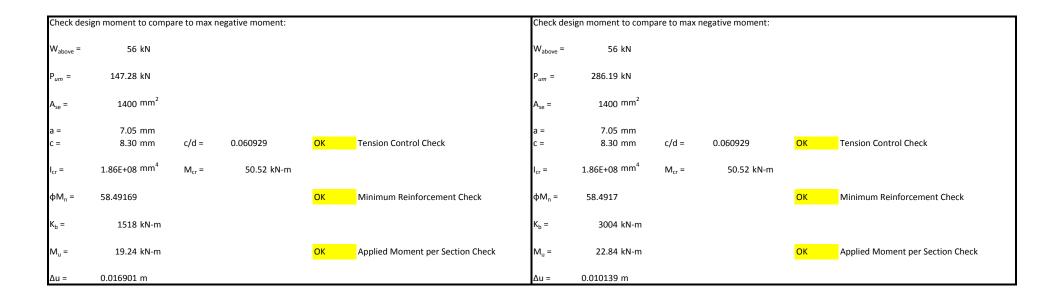

TILT UF	PANEL DES	GN		EAST A							
I _{joist} =	9925 mm	LL _{floor} = 7.2	2 kPa PLL _{floor} =	106 kN	t _{panel} = 184	1.15 mm	f _y =	350 Mpa			
spacing =	1480 mm		kPa PDL _{floor} =	40 kN		160 mm	d =	136.16 mm			
# _{joists} =	2		2 kPa PSL _{roof} =	63 kN	,	800 mm	f'c =	30 Mpa	# _{bars} =		
		1001	B kPa PWL _{roof} =	34 kN	8	156 m ²	E _s =	200000 Mpa	6		
			B kPa PDL _{roof} =	18 kN		2.08 mm 200 mm ²	E _c = f _r =	24600 Mpa			
		$w_{wind} = 1.685$ $w_{line} = 4.718$	kPa P _{seismic1} =	14 kN 23 kN	-	550 mm	ı _r = lc+ =	3.28 Mpa 3825 mm			
		Wine 4.710	seismic2	23 KN		080 mm	lc- =	5381 mm			
Load Case 1	: 1.2D +1.6S+ 0.8W			Load Cas	2: 1.2D +0.5S+1.0L	+ 1.6W					
Load Case 1	<u>. 1.20 +1.03+ 0.8w</u>			Luau Casi	2. 1.20 +0.55+1.02	+ 1.000					
Vertical Stre	ess at midheight sect	ion of first story panel segment:		Vertical S	ress at midheight se	ection of first st	ory panel segment:				
=	93 kN			=	93 kN						
P _{um} =	310 kN			P _{um} =	373 kN						
$P_{um}/A_g =$	600 kPa	1800 kPa		$P_{um}/A_g =$	722 kPa	1800	kPa				
M ₁ =	13.83 kN-m	M _{max} + 13.84	kN-m 9.595 m	M ₁ =	12.82 kN-m		M _{max} + 13.	<mark>01</mark> kN-m 9.	392 m		
M ₂ =	20.03 kN-m	M _{max} 28.29	kN-m 5.381 m	M ₂ =	14.18 kN-m		M _{max}	<mark>25</mark> kN-m 5.	381 m		
Check desig	n moment to compa	re to max positive moment:		Check de	Check design moment to compare to max positive moment:						
W _{above} =	7 kN			W _{above} =	9 kN						
P _{um} =	352.25 kN			P _{um} =	305.35 kN						
A _{se} =	1200 mm ²			A _{se} =	1200 mm ²						
a =	5.88 mm			a =	5.88 mm						
c =	6.92 mm	c/d = 0.050826	OK Tension Control Check	c =	6.92 mm	c/d =	0.050826	OK Tensio	n Control Check		
I _{cr} =	1.63E+08 mm ⁴	M _{cr} = 28.73 kN-m		I _{cr} =	1.63E+08 mm ⁴	M _{cr} =	28.73 kN-m		#		
φM _n =	50.35674		OK Minimum Reinforcement	Check φM _n =	50.35674			<mark>OK </mark> Minim	um Reinforcement Check		
K _b =	2630 kN-m			K _b =	2630 kN-m						
M _u =	16.85 kN-m		OK Applied Moment per Sect	on Check M _u =	15.39 kN-m			OK Applie	d Moment per Section Check		
Δu =	0.008541 m			Δu =	0.007803 m						



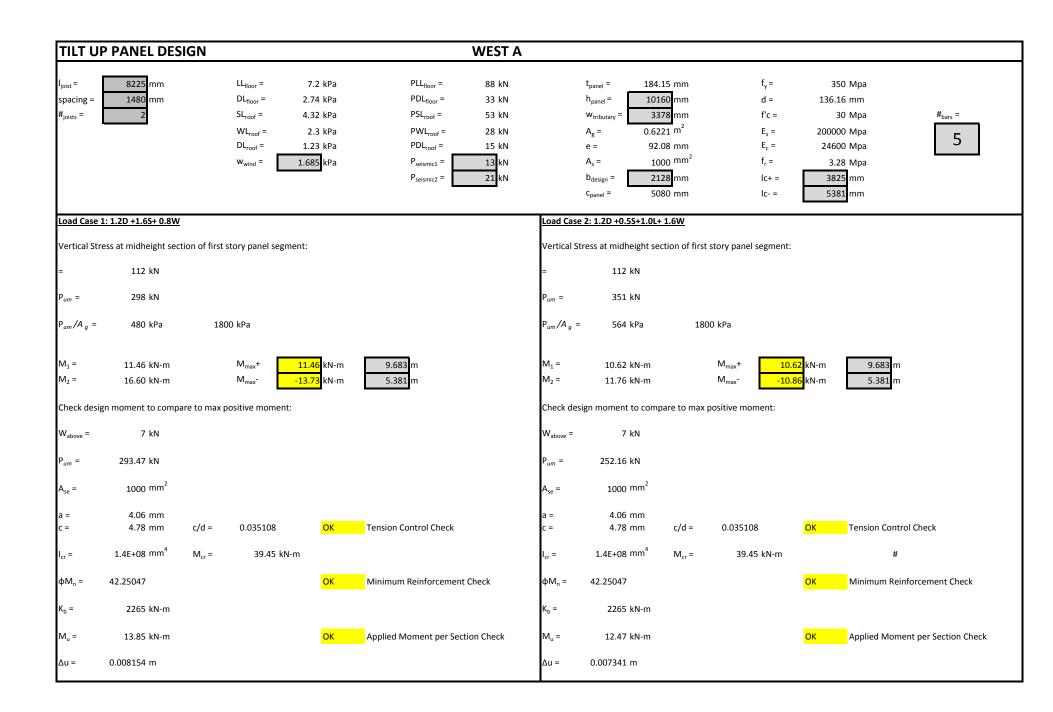


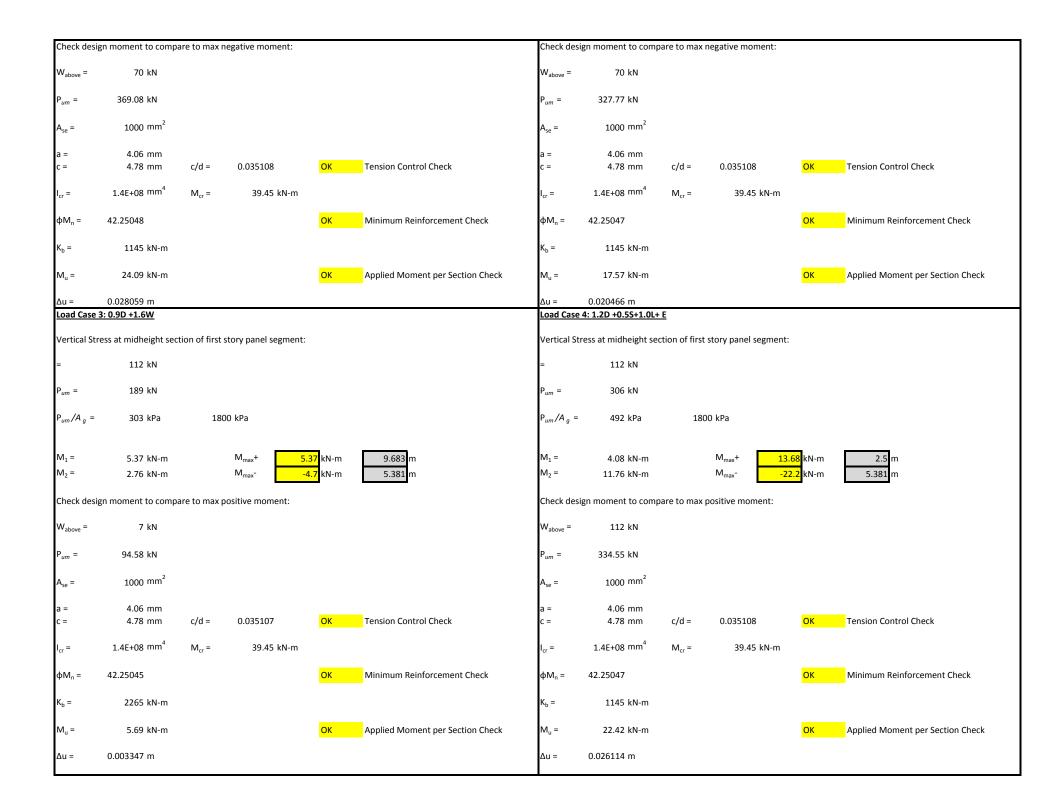


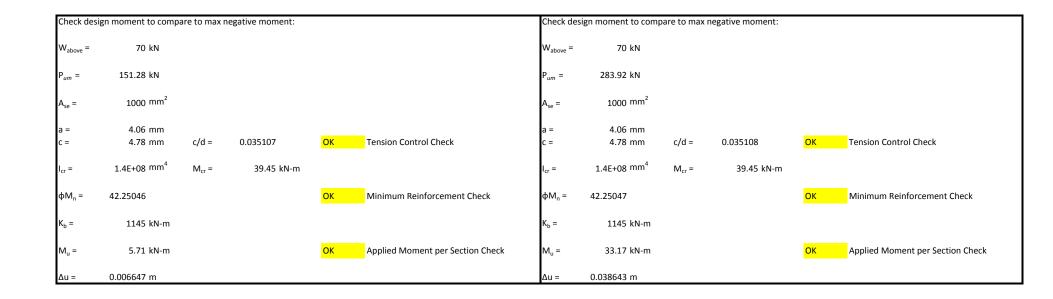


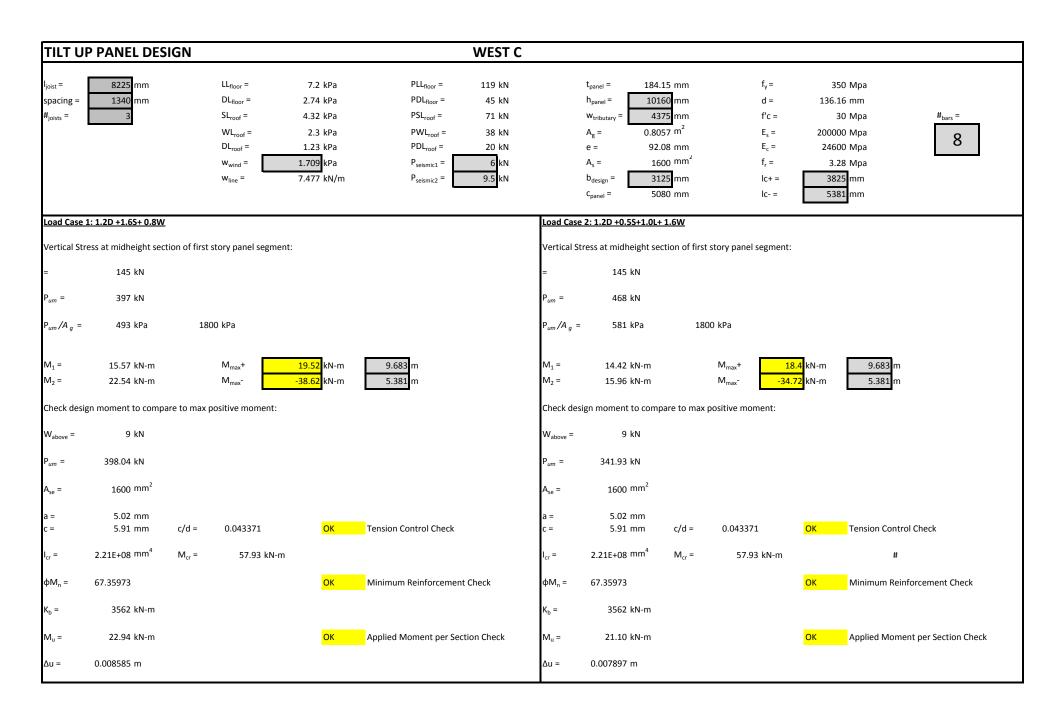


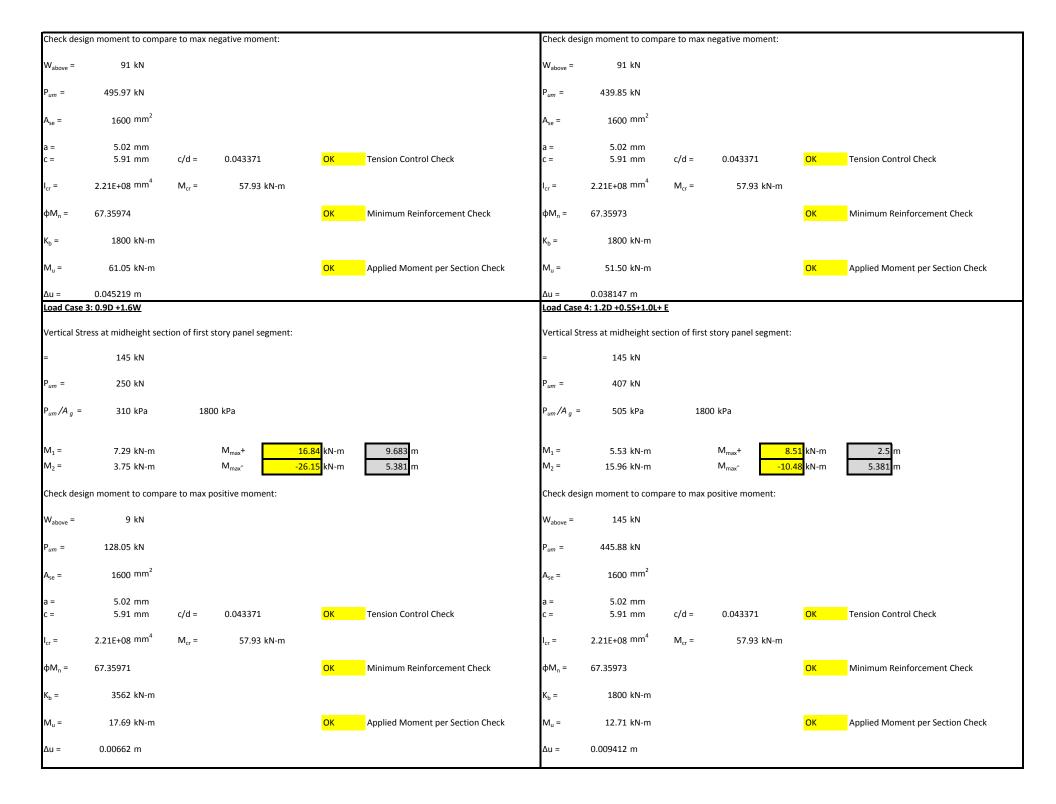
Check design moment to compare to max negative moment:							Check design moment to compare to max negative moment:						
W _{above} =	88 kN					W _{above} =	88 kN						
P _{um} =	572.26 kN					P _{um} =	504.55 kN						
A _{se} =	1800 mm ²					A _{se} =	1800 mm ²						
a = c =	5.85 mm 6.88 mm	c/d =	0.050525	ОК	Tension Control Check	a = c =	5.85 mm 6.88 mm	c/d =	0.050525	ОК	Tension Control Check		
I _{cr} =	2.45E+08 mm ⁴	M _{cr} =	55.15 kN-m			I _{cr} =	2.45E+08 mm ⁴	M _{cr} =	55.15 kN-I				
φM _n =	75.54499			ОК	Minimum Reinforcement Check	φM _n =	75.54498			<mark>ОК</mark>	Minimum Reinforcement Check		
K _b =	1995 kN-m					K _b =	1995 kN-m						
M _u =	65.08 kN-m			ОК	Applied Moment per Section Check	M _u =	53.52 kN-m			ОК	Applied Moment per Section Check		
∆u =	0.043501 m					∆u =	0.03577 m						
	3: 0.9D +1.6W						4: 1.2D +0.5S+1.0L+	E					
	ess at midheight sect	ion of first s	story panel segment:				ress at midheight sec		story panel segm	ent:			
=	140 kN					=	140 kN						
P _{um} =	270 kN					P _{um} =	449 kN						
$P_{um}/A_g =$	347 kPa	180	00 kPa			$P_{um}/A_g =$	577 kPa	180	0 kPa				
M ₁ = M ₂ =	8.79 kN-m 4.53 kN-m			<mark>09</mark> kN-m 63 kN-m	2.118 m 5.381 m	M ₁ = M ₂ =	6.68 kN-m 19.26 kN-m		M _{max} + M _{max} -	<mark>11.4</mark> kN-m -23.69 kN-m	2.692 m 5.381 m		
Check desig	gn moment to compa	re to max p	ositive moment:			Check design moment to compare to max positive moment:							
W _{above} =	147 kN					W _{above} =	137 kN						
P _{um} =	277.27 kN					P _{um} =	491.81 kN						
A _{se} =	1800 mm ²					A _{se} =	1800 mm ²						
a =	5.85 mm					a =	5.85 mm						
c =	6.88 mm	c/d =	0.050525	ОК	Tension Control Check	c =	6.88 mm	c/d =	0.050525	ОК	Tension Control Check		
I _{cr} =	2.45E+08 mm ⁴	M _{cr} =	55.15 kN-m			I _{cr} =	2.45E+08 mm ⁴	M _{cr} =	55.15 kN-1	m			
φM _n =	75.54496			ОК	Minimum Reinforcement Check	φM _n =	75.54498			ОК	Minimum Reinforcement Check		
K _b =	1995 kN-m					K _b =	1995 kN-m						
M _u =	19.75 kN-m			ОК	Applied Moment per Section Check	M _u =	16.98 kN-m			ОК	Applied Moment per Section Check		
∆u =	0.013201 m					Δu =	0.011351 m						

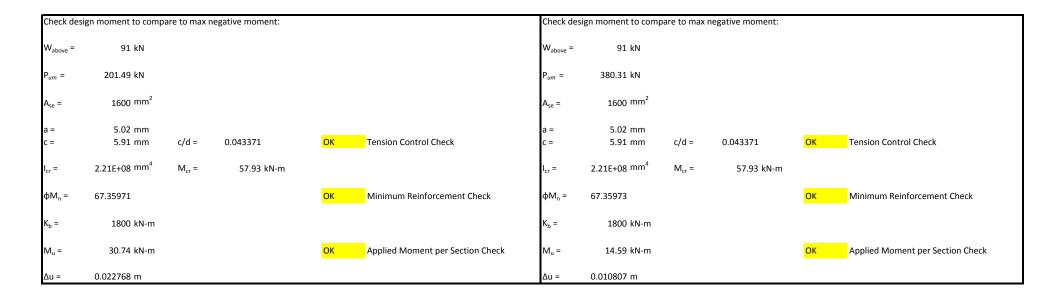


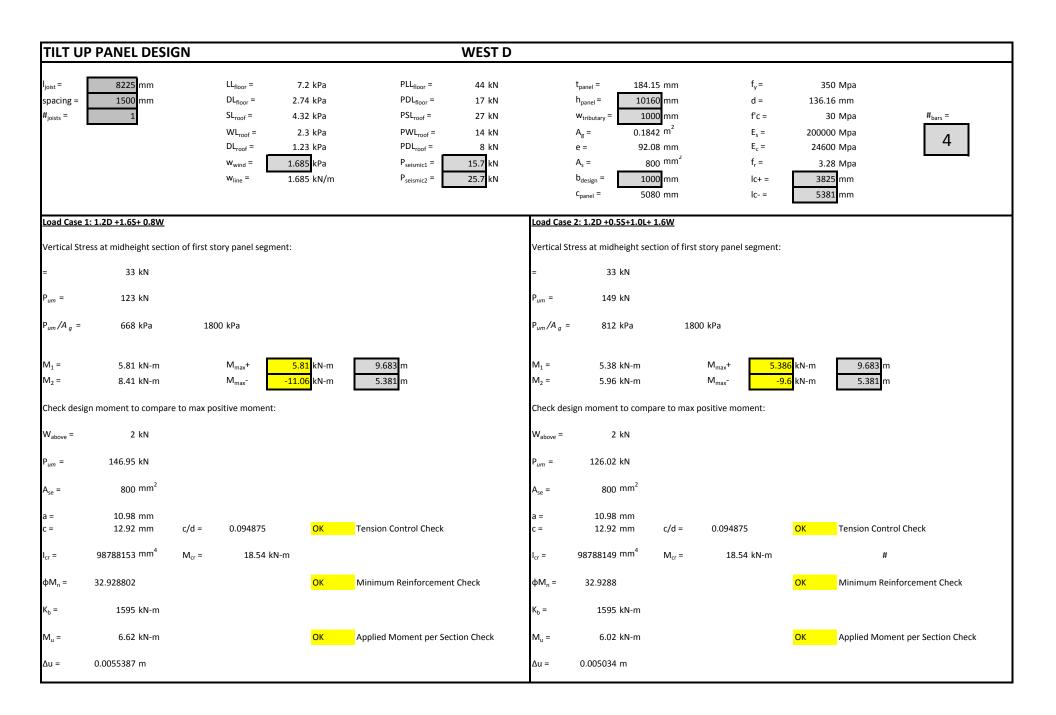


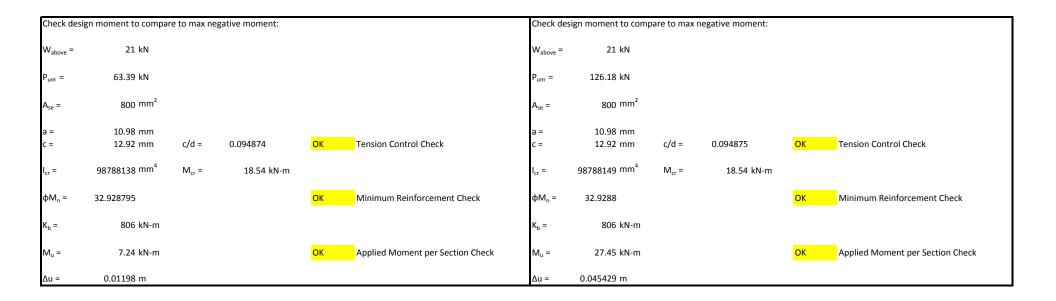

TILT UP PANEL DE	SIGN		WEST A								
l _{joist} = 8225 mm spacing = 1480 mm # _{joists} = 2	$DL_{floor} = 2$ $SL_{roof} = 4$ $WL_{roof} = 0$ $DL_{roof} = 1$	7.2 kPa PLL _{floor} = 2.74 kPa PDL _{floor} = 1.32 kPa PSL _{roof} = 2.3 kPa PWL _{roof} = 1.23 kPa PDL _{roof} = 685 kPa P _{seismic1} = P _{seismic2} = P	88 kN 33 kN 53 kN 28 kN 15 kN 13 kN 21 kN		15 mm 60 mm 50 mm 56 m ² 08 mm 00 mm ² 50 mm 80 mm	f _v = d = f'c = E _s = E _c = f _r = lc+ = lc- =	350 Mpa 136.16 mm 30 Mpa 200000 Mpa 24600 Mpa 3.28 Mpa 3825 mm 5381 mm	# _{bars} =			
Load Case 1: 1.2D +1.6S+ 0.8	w		Load Cas	2: 1.2D +0.5S+1.0L+	1.6W						
Vertical Stress at midheight s	ection of first story panel segment	:	Vertical S	Vertical Stress at midheight section of first story panel segment:							
= 93 kN			=	93 kN							
P _{um} = 276 kN			P _{um} =	328 kN							
P _{um} /A _g = 534 kPa	1800 kPa		P _{um} /A _g =	636 kPa	1800 kPa						
$M_1 = 11.46 \text{ kN-m}$ $M_2 = 16.60 \text{ kN-m}$		1.46 kN-m 9.683 m 3.73 kN-m 5.381 m	M ₁ = M ₂ =	10.62 kN-m 11.76 kN-m ign moment to comp	M _{ma} M _{ma}	x ⁻ -10.8		83 m 81 m			
-	pare to max positive moment.					e moment.					
W _{above} = 6 kN			W _{above} =	6 kN							
P _{um} = 292.04 kN			P _{um} =	250.73 kN							
A _{se} = 800 mm ²			A _{se} =	800 mm ²							
a = 3.92 mm c = 4.61 mm	c/d = 0.033884	OK Tension Control Check	a = c =	3.92 mm 4.61 mm	c/d = 0.0	33884	OK Tensior	Control Check			
I _{cr} = 1.13E+08 mm ⁴	M _{cr} = 28.73 kN-m		I _{cr} =	1.13E+08 mm ⁴	M _{cr} =	28.73 kN-m		#			
φM _n = 33.81823		OK Minimum Reinforcemer	t Check φM _n =	33.81822			<mark>OK </mark> Minimu	m Reinforcement Check			
K _b = 1817 kN-m			К _b =	1817 kN-m							
M _u = 14.59 kN-m		OK Applied Moment per Se	ction Check M _u =	13.01 kN-m			OK Applied	Moment per Section Check			
Δu = 0.010705 m			Δu =	0.009552 m							

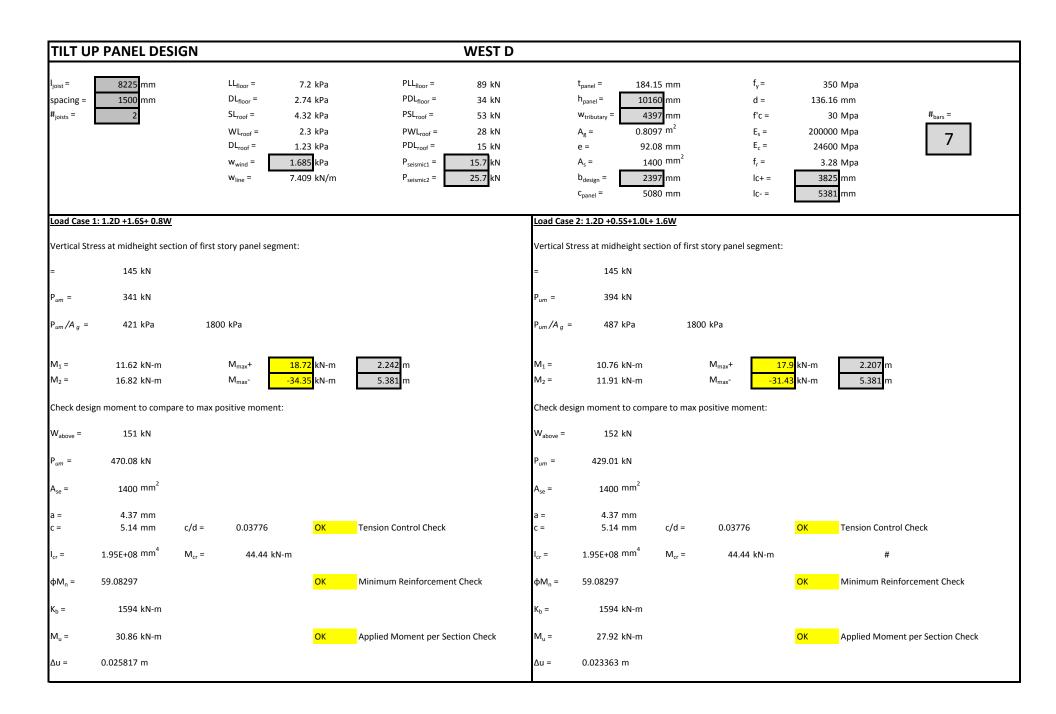


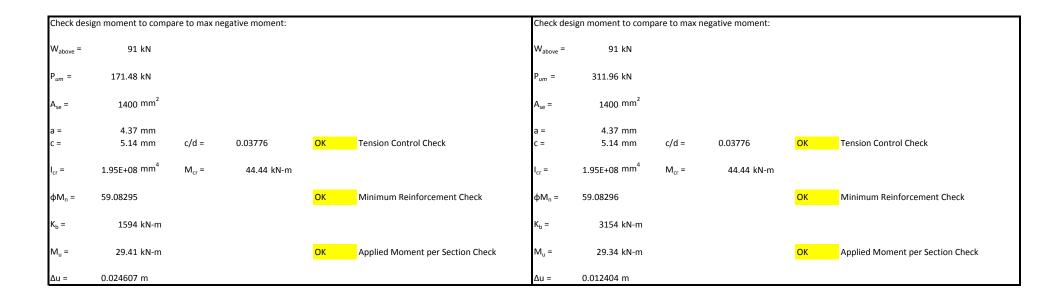

Check design moment to compare to max negative moment:						Check design moment to compare to max negative moment:					
W _{above} =	58 kN					W _{above} =	58 kN				
P _{um} =	140.51 kN					P _{um} =	269.55 kN				
A _{se} =	800 mm ²					A _{se} =	800 mm ²				
a = c =	3.92 mm 4.61 mm	c/d =	0.033884	ОК	Tension Control Check	a = c =	3.92 mm 4.61 mm	c/d =	0.033884	ОК	Tension Control Check
I _{cr} =	1.13E+08 mm ⁴	M _{cr} =	28.73 kN-m			I _{cr} =	1.13E+08 mm ⁴	M _{cr} =	28.73 kN-m		
φM _n =	33.81821			OK	Minimum Reinforcement Check	φM _n =	33.81822			ОК	Minimum Reinforcement Check
K _b =	918 kN-m					K _b =	1817 kN-m				
M _u =	5.91 kN-m			ОК	Applied Moment per Section Check	M _u =	27.67 kN-m			ОК	Applied Moment per Section Check
∆u =	0.008577 m					∆u =	0.020311 m				

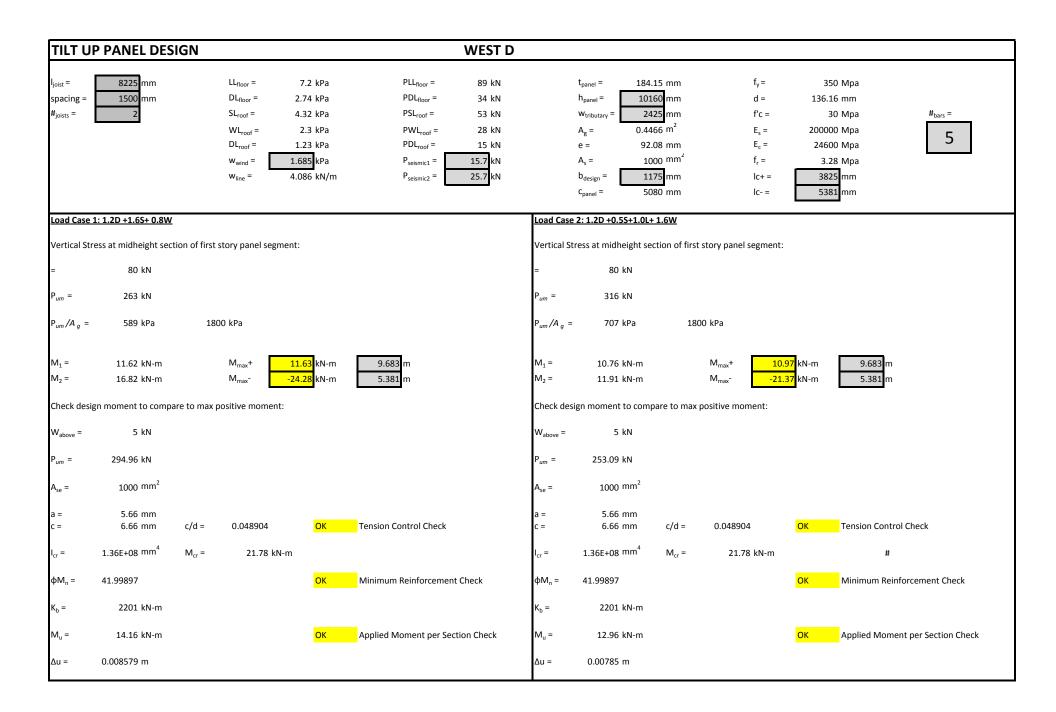


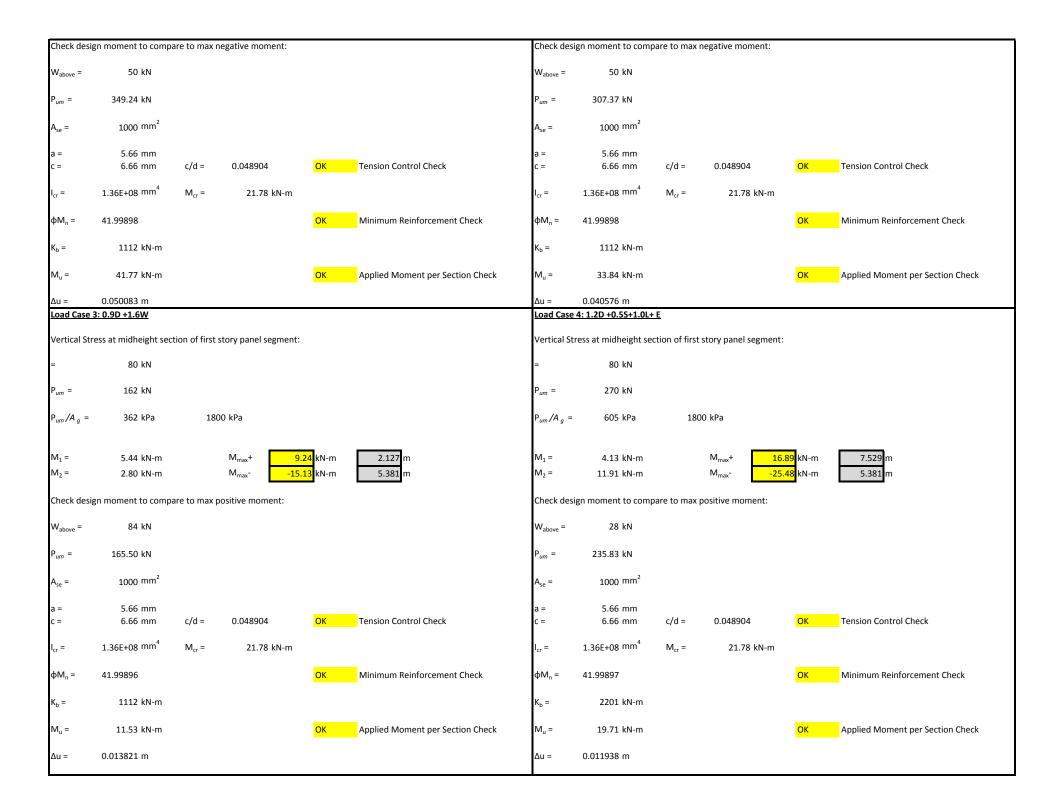


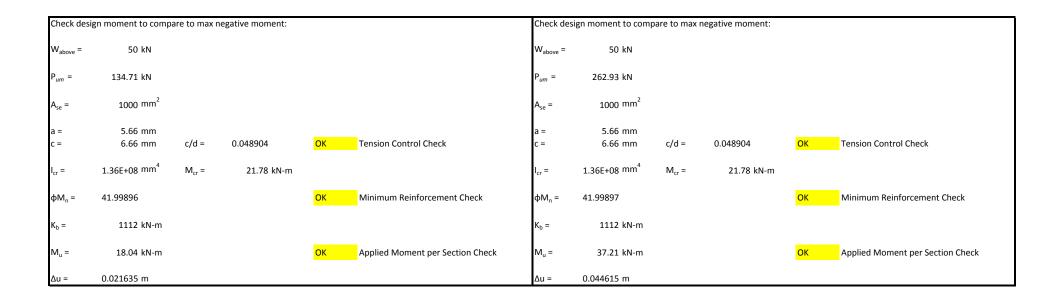


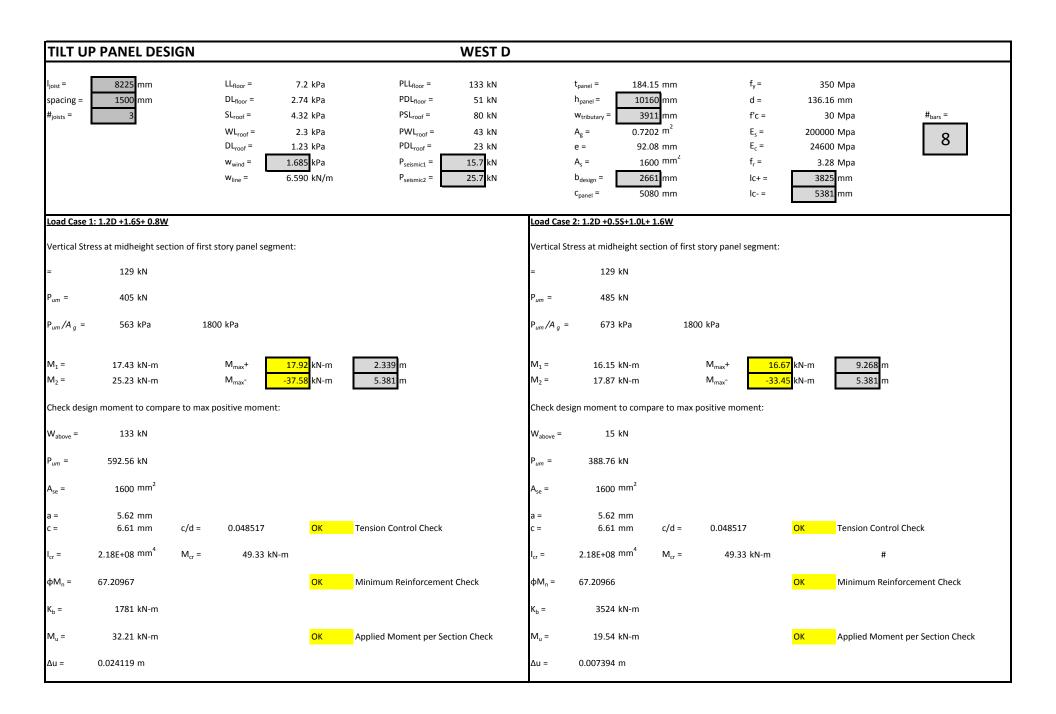


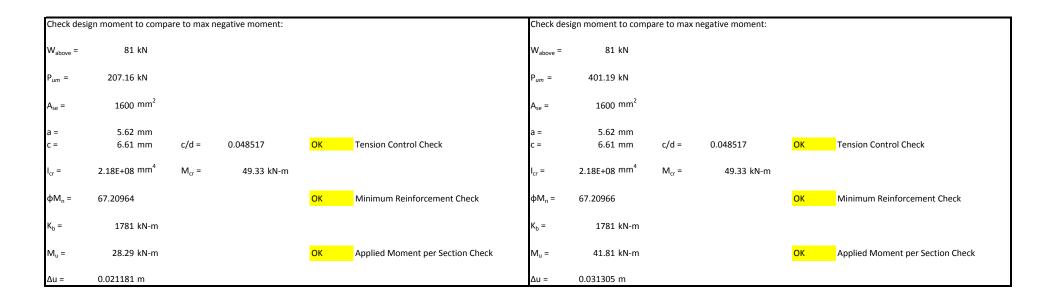


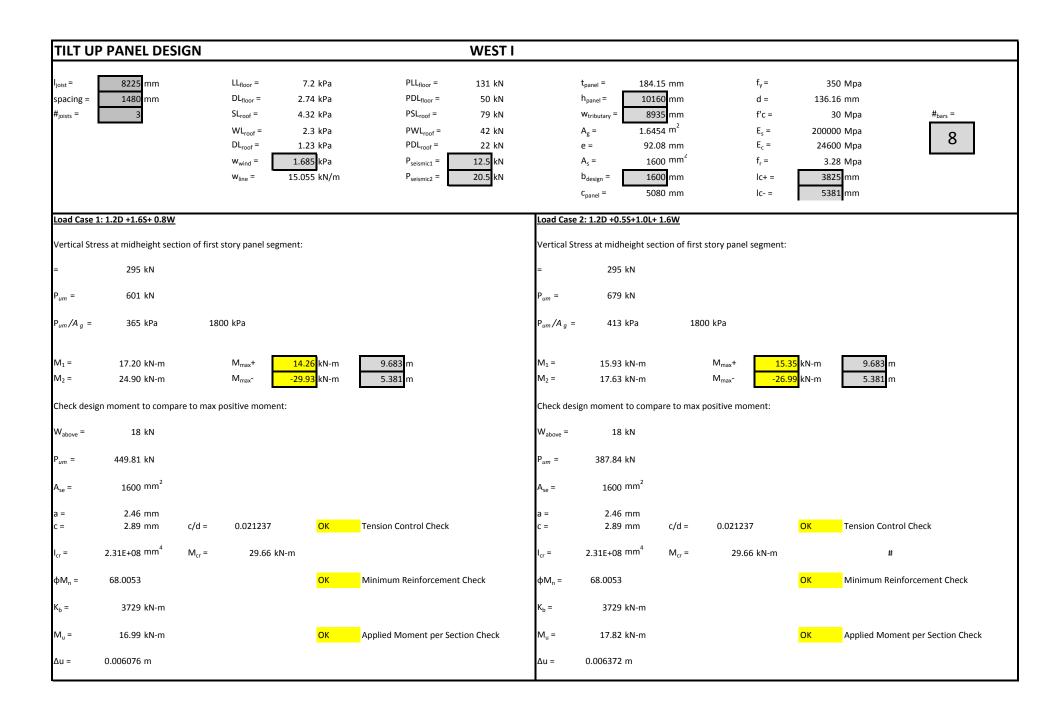

Check design moment to compare to max negative moment:						Check design moment to compare to max negative moment:						
W _{above} =	21 kN					W _{above} =	21 kN					
P _{um} =	169.34 kN					P _{um} =	148.40 kN					
A _{se} =	800 mm ²					A _{se} =	800 mm ²					
a = c =	10.98 mm 12.92 mm	c/d =	0.094875	ОК	Tension Control Check	a = c =	10.98 mm 12.92 mm	c/d =	0.094875	ОК	Tension Control Check	
l _{cr} =	98788158 mm ⁴	M _{cr} =	18.54 kN-m				98788154 mm ⁴	M _{cr} =	18.54 kN-m			
φM _n =	32.928803			<mark>OK</mark>	Minimum Reinforcement Check	φM _n =	32.9288			<mark>ОК</mark>	Minimum Reinforcement Check	
K _b =	806 kN-m					K _b =	806 kN-m					
M _u =	15.37 kN-m			<mark>OK</mark>	Applied Moment per Section Check	M _u =	12.72 kN-m			ОК	Applied Moment per Section Check	
∆u =	0.0254279 m					Δu =	0.021058 m					
	: 0.9D +1.6W						4: 1.2D +0.5S+1.0L+ E					
	ess at midheight sectio	n of first sto	ory panel segment:				ess at midheight sect		tory panel segment:			
=	33 kN					=	33 kN					
P _{um} =	74 kN					P _{um} =	127 kN					
$P_{um}/A_g =$	404 kPa	1800) kPa			$P_{um}/A_g =$	688 kPa	1800) kPa			
M ₁ = M ₂ =	2.72 kN-m 1.40 kN-m			L kN-m 3 kN-m	9.683 m 5.381 m	M ₁ = M ₂ =	2.07 kN-m 5.96 kN-m			7.7 kN-m 72 kN-m	7.538 m 5.381 m	
Check desig	n moment to compare	to max pos	itive moment:			Check design moment to compare to max positive moment:						
W _{above} =	2 kN					W _{above} =	11 kN					
P _{um} =	46.60 kN					P _{um} =	114.96 kN					
A _{se} =	800 mm ²					A _{se} =	800 mm ²					
a = c =	10.98 mm 12.92 mm	c/d =	0.094874	ОК	Tension Control Check	a = c =	10.98 mm 12.92 mm	c/d =	0.094875	ОК	Tension Control Check	
I _{cr} =	98788134 mm ⁴	M _{cr} =	18.54 kN-m			I _{cr} =	98788147 mm ⁴	M _{cr} =	18.54 kN-m			
φM _n =	32.928794			ОК	Minimum Reinforcement Check	φM _n =	32.9288			ОК	Minimum Reinforcement Check	
K _b =	1595 kN-m					K _b =	1595 kN-m					
M _u =	3.96 kN-m			<mark>OK</mark>	Applied Moment per Section Check	M _u =	19.58 kN-m			ОК	Applied Moment per Section Check	
Δu =	0.003315 m					∆u =	0.016374 m					

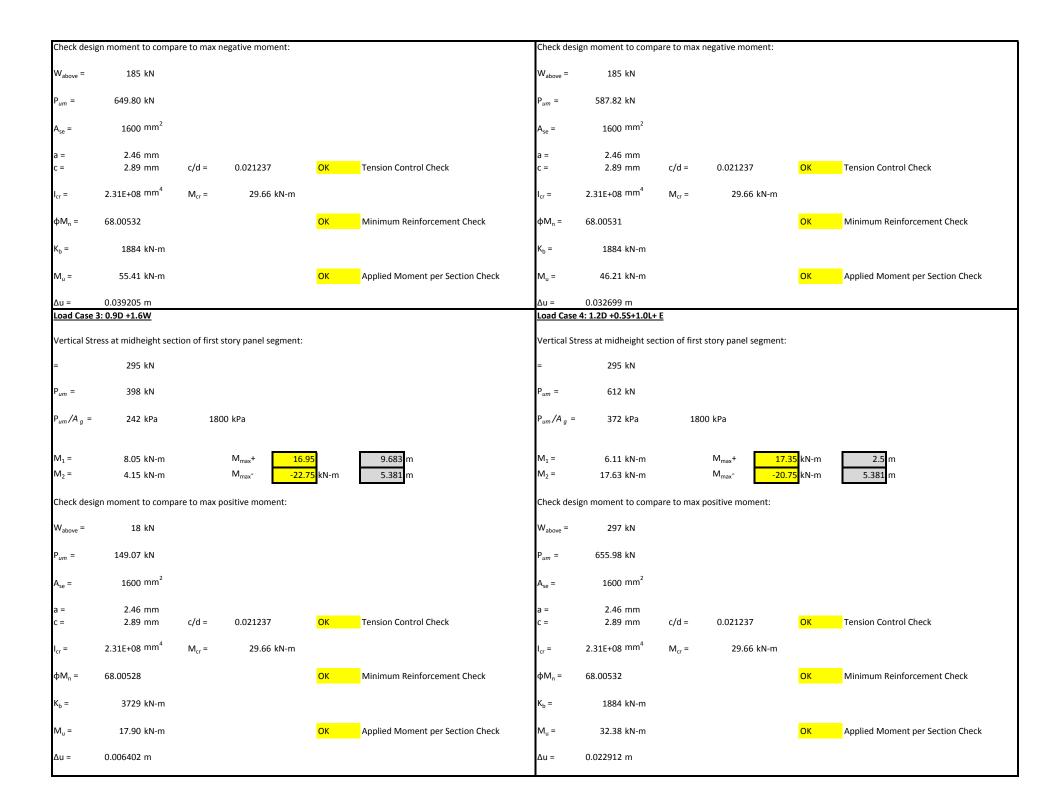


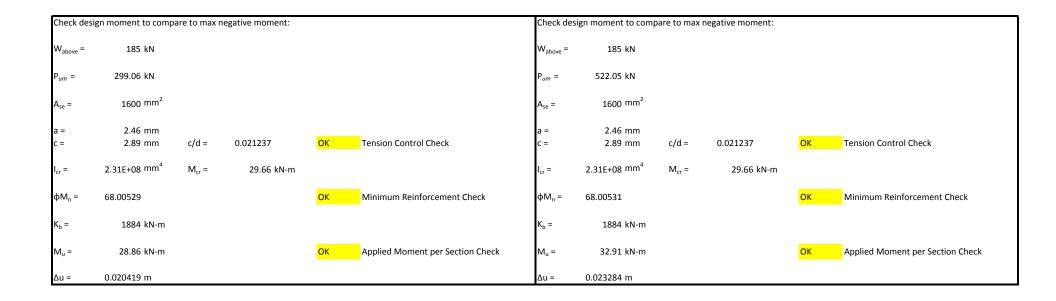


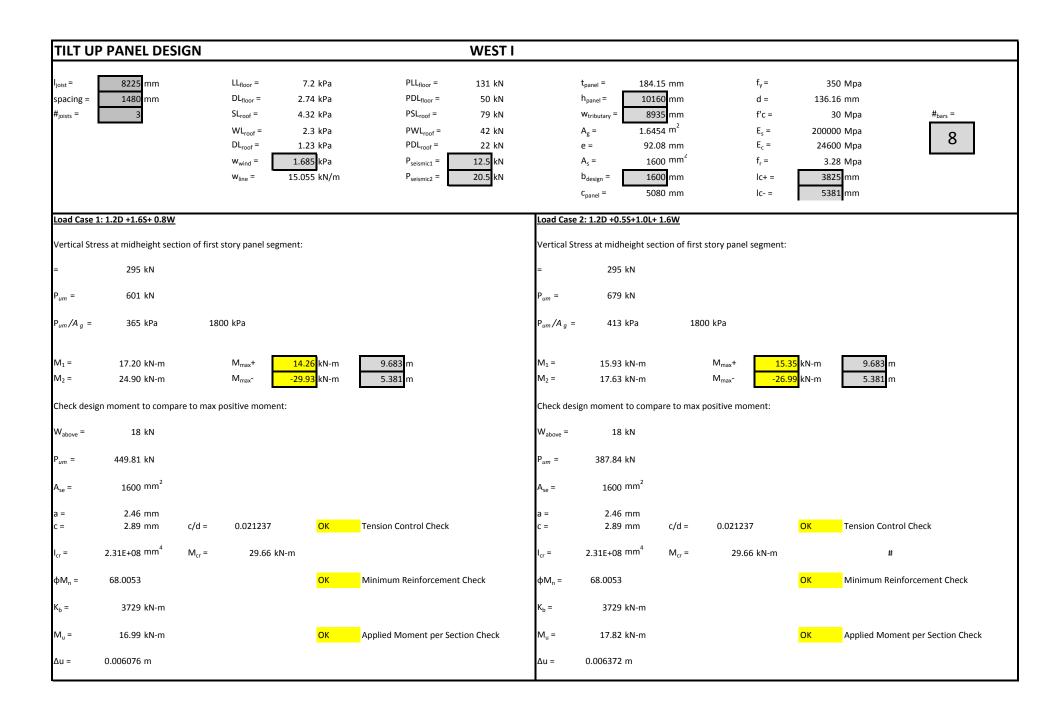

Check desig	gn moment to compa	re to max negative moment:		Check design moment to compare to max negative moment:						
W _{above} =	91 kN				W _{above} =	91 kN				
P _{um} =	398.27 kN				P _{um} =	356.40 kN				
A _{se} =	1400 mm ²				A _{se} =	1400 mm ²				
a = c =	4.37 mm 5.14 mm	c/d = 0.03776	ОК	Tension Control Check	a = c =	4.37 mm 5.14 mm	c/d =	0.03776	ОК	Tension Control Check
	1.95E+08 mm ⁴		UK		-	1.95E+08 mm ⁴				
I _{cr} =	1.952+08	M _{cr} = 44.44 kN-m			I _{cr} =	1.952+08	M _{cr} =	44.44 kN-m		
φM _n =	59.08297		ОК	Minimum Reinforcement Check	φM _n =	59.08296			ОК	Minimum Reinforcement Check
K _b =	1594 kN-m				K _b =	1594 kN-m				
M _u =	51.52 kN-m		ОК	Applied Moment per Section Check	M _u =	44.78 kN-m			ОК	Applied Moment per Section Check
Δu =	0.043104 m				Δu =	0.037471 m				
Load Case	<u>3: 0.9D +1.6W</u>				Load Case	4: 1.2D +0.5S+1.0L+	<u>E</u>			
Vertical Str	ess at midheight sect	ion of first story panel segment:			Vertical Str	ess at midheight sec	tion of first s	story panel segment:		
=	145 kN				=	145 kN				
P _{um} =	220 kN				P _{um} =	349 kN				
$P_{um}/A_g =$	272 kPa	1800 kPa			$P_{um}/A_g =$	430 kPa	180) kPa		
M ₁ =	5.44 kN-m	M _{max} + 16.	<mark>75</mark> kN-m	9.683 m	M ₁ =	4.13 kN-m		M _{max} + 16	<mark>.89</mark> kN-m	7.538 m
M ₂ =	2.80 kN-m	M _{max} 25.	<mark>19</mark> kN-m	5.381 m	M ₂ =	11.91 kN-m		M _{max} 25	<mark>.47</mark> kN-m	5.381 m
Check desig	gn moment to compa	re to max positive moment:			Check design moment to compare to max positive moment:					
W _{above} =	9 kN				W _{above} =	50 kN				
P _{um} =	97.67 kN				P _{um} =	262.61 kN				
A _{se} =	1400 mm ²				A _{se} =	1400 mm ²				
a =	4.37 mm				a =	4.37 mm				
c =	5.14 mm	c/d = 0.03776	ОК	Tension Control Check	c =	5.14 mm	c/d =	0.03776	ОК	Tension Control Check
I _{cr} =	1.95E+08 mm ⁴	M _{cr} = 44.44 kN-m			I _{cr} =	1.95E+08 mm ⁴	M _{cr} =	44.44 kN-m		
φM _n =	59.08294		ОК	Minimum Reinforcement Check	φM _n =	59.08296			ОК	Minimum Reinforcement Check
K _b =	3154 kN-m				K _b =	3154 kN-m				
M _u =	17.47 kN-m		ОК	Applied Moment per Section Check	M _u =	19.00 kN-m			ОК	Applied Moment per Section Check
Δu =	0.007386 m				Δu =	0.008032 m				

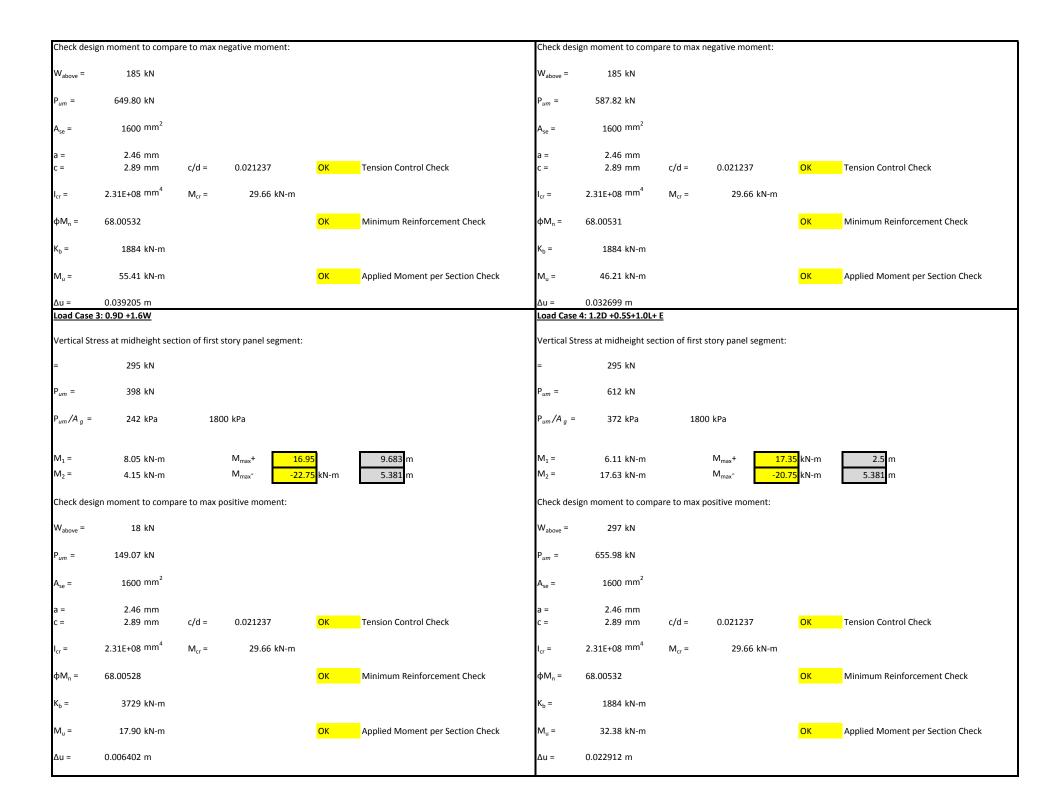


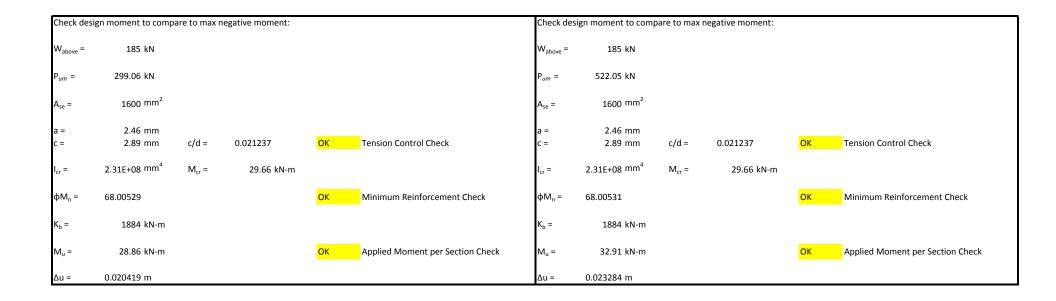


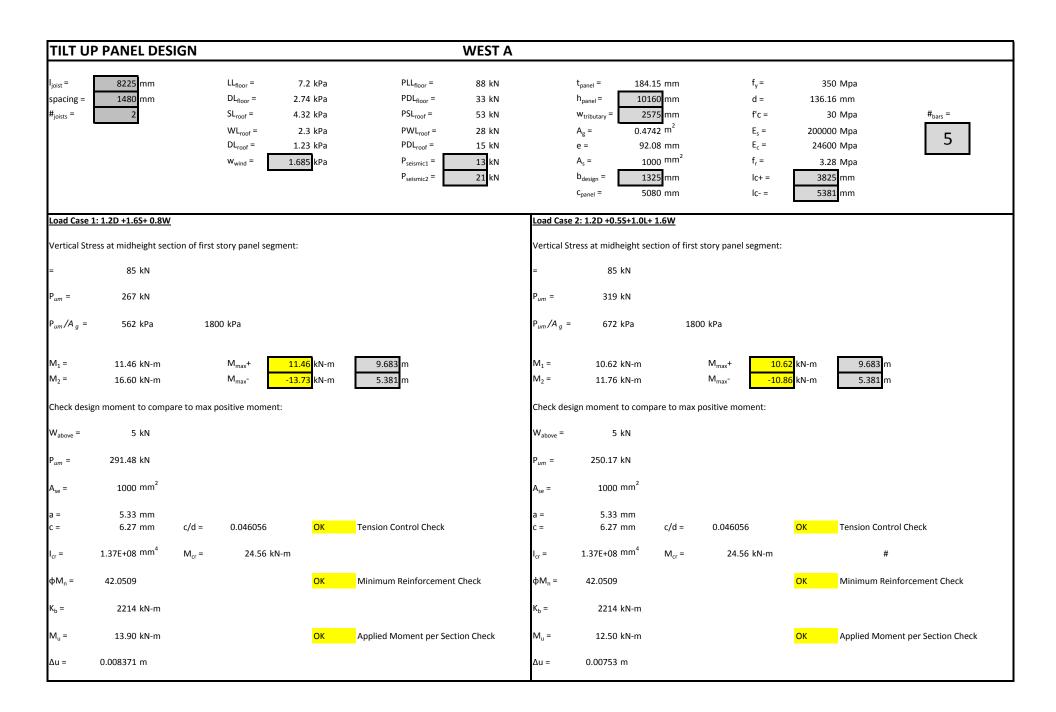


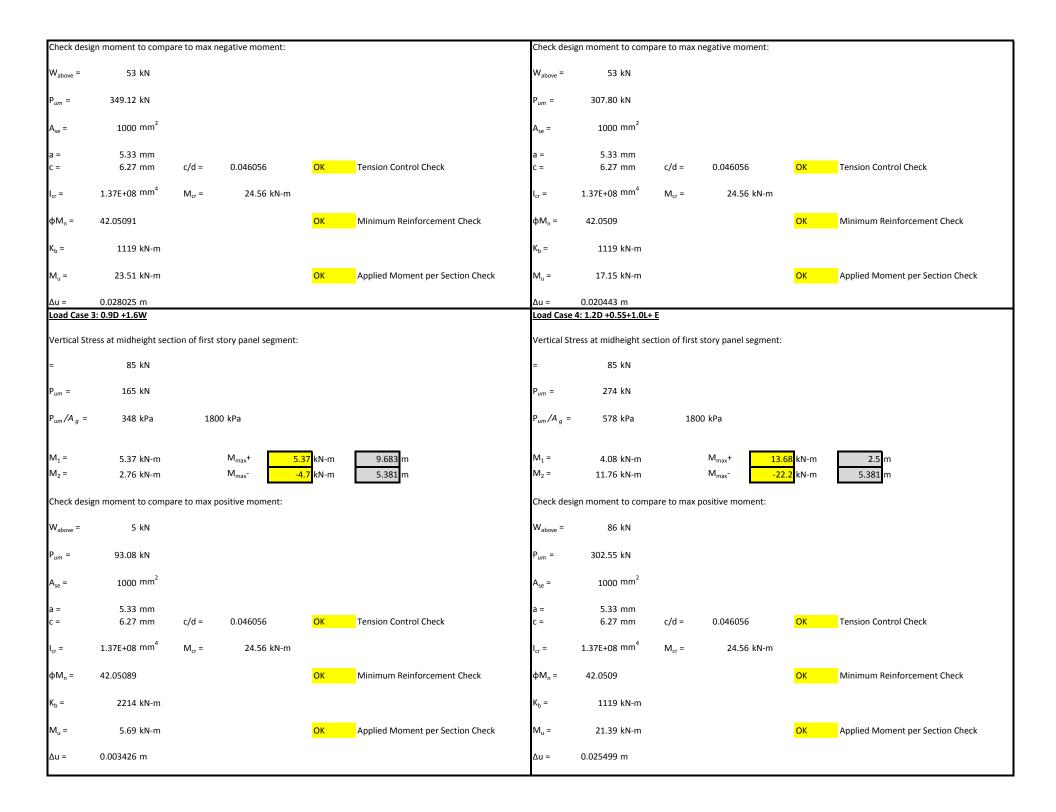


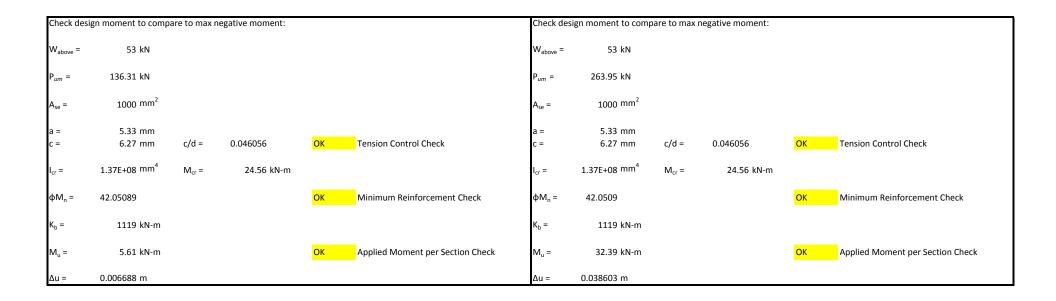

Check desig	n moment to compa	are to max negative moment:	Check design moment to compare to max negative moment:							
W _{above} =	81 kN			W _{above} =	81 kN					
P _{um} =	530.66 kN			P _{um} =	467.85 kN					
A _{se} =	1600 mm ²			A _{se} =	1600 mm ²					
a = c =	5.62 mm 6.61 mm	c/d = 0.048517	OK Tension Control Check	a = c =	5.62 mm 6.61 mm	c/d =	0.048517	ОК	Tension Control Check	
I _{cr} =	2.18E+08 mm ⁴	M _{cr} = 49.33 kN-m		I _{cr} =	2.18E+08 mm ⁴	M _{cr} =	49.33 kN-m			
φM _n =	67.20967		OK Minimum Reinforcement Check	φM _n =	67.20966			ОК	Minimum Reinforcement Check	
K _b =	1781 kN-m			K _b =	1781 kN-m					
M _u =	62.36 kN-m		OK Applied Moment per Section Check	M _u =	51.49 kN-m			ОК	Applied Moment per Section Check	
Δu =	0.04669 m			Δu =	0.03855 m					
	3: 0.9D +1.6W				4: 1.2D +0.5S+1.0L+	E				
		tion of first story panel segment:		Vertical St	ress at midheight sec	ction of first s	tory panel segment	::		
=	129 kN			=	129 kN					
P _{um} =	251 kN			P _{um} =	416 kN					
$P_{um}/A_g =$	348 kPa	1800 kPa		$P_{um}/A_g =$	578 kPa	1800) kPa			
M ₁ = M ₂ =	8.16 kN-m 4.20 kN-m		<mark>4.9</mark> kN-m 2.136 m 3.9 kN-m 5.381 m	M ₁ = M ₂ =	6.20 kN-m 17.87 kN-m			5.04 kN-m 9.25 kN-m	7.529 m 5.381 m	
Check desig	n moment to compa	are to max positive moment:		Check design moment to compare to max positive moment:						
W _{above} =	136 kN			W _{above} =	45 kN					
P _{um} =	256.68 kN			P _{um} =	357.48 kN					
A _{se} =	1600 mm ²			A _{se} =	1600 mm ²					
a = c =	5.62 mm 6.61 mm	c/d = 0.048517	OK Tension Control Check	a = c =	5.62 mm 6.61 mm	c/d =	0.048517	ОК	Tension Control Check	
l _{cr} =	2.18E+08 mm ⁴	M _{cr} = 49.33 kN-m		I _{cr} =	2.18E+08 mm ⁴	M _{cr} =	49.33 kN-m			
φM _n =	67.20965		OK Minimum Reinforcement Check	φM _n =	67.20965			ОК	Minimum Reinforcement Check	
K _b =	1781 kN-m			K _b =	1781 kN-m					
M _u =	18.44 kN-m		OK Applied Moment per Section Check	M _u =	21.90 kN-m			ОК	Applied Moment per Section Check	
Δu =	0.013811 m			Δu =	0.0164 m					

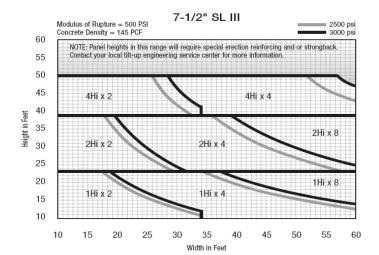


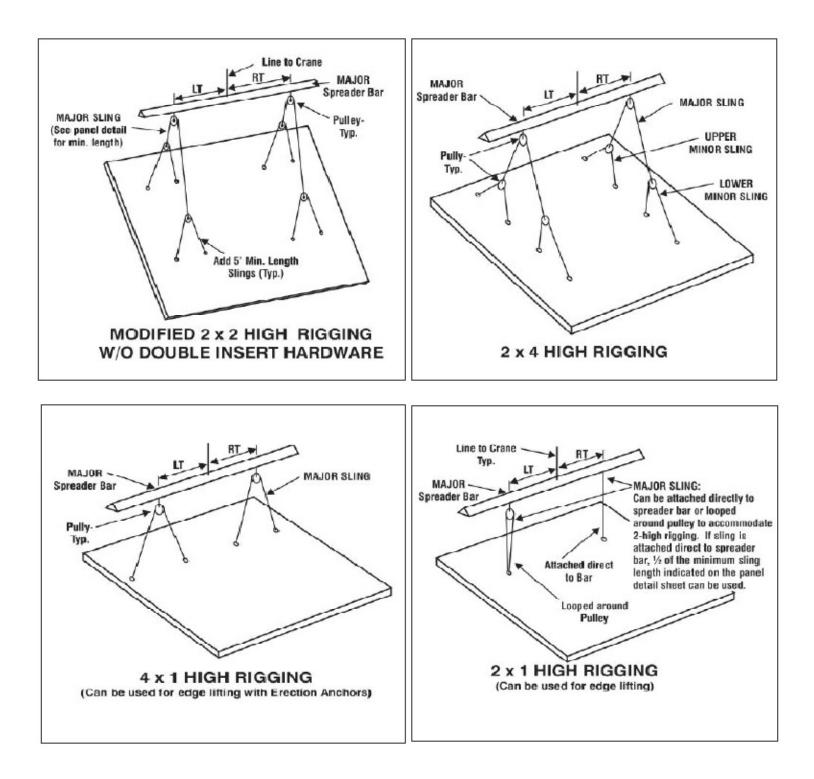












SUPER-LIFT III BID CHART

Panel Height Height Width Width (m) Sides Lift Type (ft) Type (m) (ft) С 6.054 33.333 North 10.160 19.863 2Hi x 2 А 10.160 28.543 8.700 33.333 2Hi x 4 В 10.160 8.134 33.333 26.687 2Hi x 4 Е 5.860 7.868 19.226 25.815 1Hi x 4 С 4.684 33.333 15.368 2Hi x 2 10.160 East А 10.160 9.450 33.333 31.004 2Hi x 4 А 10.160 8.700 33.333 28.543 2Hi x 4 А 10.160 8.400 33.333 27.559 2Hi x 4 С 10.160 6.950 33.333 22.802 2Hi x 2 Е 5.860 7.616 19.226 24.987 1Hi x 4 G 49.442 South 10.160 15.070 33.333 2Hi x 4 Н 10.160 8.920 33.333 29.265 2Hi x 4 G 10.160 10.900 33.333 35.761 2Hi x 4 F West 5.860 7.616 19.226 24.987 1Hi x 4 С 10.160 4.150 33.333 13.615 1Hi x 2 А 33.333 10.160 8.978 29.454 2Hi x 4 D 10.160 11.733 33.333 38.495 2Hi x 4 10.160 8.455 33.333 27.740 2Hi x 4

Sides	Panel Type	Height (m)	Width (m)	Area (m^2)	# Lift Points High	# Lift Points Wide	Weight (kg)
North	С	10.160	6.054	61.510	2.00	2.00	27185.032
	А	10.160	8.700	88.392	4.00	2.00	39065.728
	В	10.160	8.134	82.643	2.00	2.00	36524.884
	E	5.860	7.868	46.108	1.00	4.00	20377.997
	С	10.160	4.684	47.591	2.00	2.00	21033.302
East	А	10.160	9.450	96.012	4.00	2.00	42433.464
	А	10.160	8.700	88.392	4.00	2.00	39065.728
	А	10.160	8.400	85.344	4.00	2.00	37718.634
	С	10.160	6.950	70.612	4.00	2.00	31207.680
	E	5.860	7.616	44.630	1.00	4.00	19724.569
South	G	10.160	15.070	153.111	2.00	4.00	60492.745
	Н	10.160	8.920	90.627	2.00	4.00	53297.061
	G	10.160	10.900	110.744	2.00	4.00	42827.847
West	F	5.860	7.616	44.630	1.00	4.00	18563.646
	С	10.160	4.375	44.450	1.00	2.00	18540.222
	Α	10.160	8.753	88.930	2.00	4.00	35989.015
	D	10.160	11.733	119.211	2.00	4.00	47330.913
	I	10.160	8.455	85.903	4.00	2.00	37702.061
	Panel Thickness (m	1)	0.18415				

Unit Weight Concrete (kg/m^3)

2400.000

Sides	Panel Type	X Distance to First Strip	Corresponding Design Strip	Width of Panel for Lift	Weight for Lift	Distributed Load (kN/m)	Max Moment	Corresponding Graph Moment	Moment Coefficient 30 deg	Moment Coefficient 45 deg	Moment Coefficient 60 deg	Mr	# bars	new Mr	new # bars
North	С	970	Strip 1	2342	103.1650448	44.04997642	76.805223	Mb	15.5	19	16.5	67.0844053	8	86.39461967	11
	Α	1796	Strip 1	4345	191.3971475	44.04997642	68.175598	Mf	0.5	4.5	6.5	50.431898	6	29.5560541	6
	В	1767	Strip 1	4150	182.8074021	44.04997642	77.774079	Md	-14	-11.5	-8.5	50.5913632	6	-52.29148032	7
	E	818	Strip 1	1963	49.8735047	25.40677774	37.335315	Ма	27	27.5	26.5	150.845	18	23.99261108	18
	С	970	Strip 1	2342	103.1650448	44.04997642	76.805223	Mb	15.5	19	16.5	83.859249	10	86.39461967	11
East	A	1912	Strip 1	4681	206.1979396	44.04997642	67.069363	Mf	0.5	4.5	6.5	58.94607	7	29.5560541	7
	Α	1806	Strip 1	4355	191.8376473	44.04997642	68.005035	Mf	0.5	4.5	6.5	58.94607	7	29.5560541	7
	Α	1739	Strip 1	4200	185.0099009	44.04997642	68.54965	Mf	0.5	4.5	6.5	58.94607	7	29.5560541	7
	С	1515	Strip 1	3551	156.4214663	44.04997642	72.067664	Mf	0.5	4.5	6.5	75.54499	9	29.5560541	9
	E	792	Strip 1	1900	48.2728777	25.40677774	37.335315	Ma	27	27.5	26.5	150.727	18	23.1201525	18
South	G	1463	Strip 1	3551	139.8330134	39.37848872	113.618206	Mb	15.5	19	16.5	67.802848	8	77.23249438	10
	н	929	Strip 1	2229	130.652428	58.61481742	172.738665	Mb	15.5	19	16.5	68.005299	8	114.9604442	14
	G	1235	Strip 1	2922.5	112.6479433	38.54506187	109.672664	Mb	15.5	19	16.5	101.7945	12	75.59790564	12
West	F	873	Strip 1	2062	49.3053457	23.91141887	35.136959	Ма	27	27.5	26.5	33.7999	4	22.58048538	4
	С	872	Strip 1	2154	89.547111	41.57247493	39.671737	Mh	-3.5	-3	-2.5	67.35973	8	-15.01970284	8
	A	922	Strip 1	2207.5	89.03950785	40.33499789	56.43455	Mf	0.5	4.5	6.5	42.0509	5	27.06342833	5
	D	1259	Strip 2	3005	118.9149175	39.57235192	71.433078	Mb	15.5	19	16.5	59.08297	7	77.61271563	10
	I	1750	Strip 1	1750	76.55235101	43.74420057	50.744322	Mb	10.5	13	11.5	68.0053	8	58.70177756	8

Sides	Panel Type	X Distance to Second Strip	Corresponding Design Strip	Width of Panel for Lift	Weight for Lift	Distributed Load (kN/m)	Max Moment	Corresponding Graph Moment	Moment Coefficient 30 dea	Moment Coefficient 45 deg	Moment Coefficient 60 deg	Mr	# bars	new Mr	new # bars
North	С	3715	Strip 2	2342	103.1650448	44.04997642	76.805223	Mb	15.5	19	16.5	50.2035811	6	75.02690655	10
	А	6894	Strip 3	4355	191.8376473	44.04997642	68.175598	Mf	0.5	4.5	6.5	33.8347585	4	29.5560541	4
	В	6534	Strip 2	3984	175.495106	44.04997642	77.774079	Md	-14	-11.5	-8.5	83.8160226	10	-52.29148032	10
	E	3108	Strip 1	1971	50.07675892	25.40677774	37.335315	Ma	27	27.5	26.5	150.845	18	23.99261108	18
	С	3715	Strip 1	2342	103.1650448	44.04997642	76.805223	Mb	15.5	19	16.5	83.859249	10	86.39461967	11
East	Α	7450	Strip 3	4769	210.0743375	44.04997642	67.069363	Mf	0.5	4.5	6.5	50.35674	6	29.5560541	6
	Α	6904	Strip 3	4345	191.3971475	44.04997642	68.005035	Mf	0.5	4.5	6.5	50.35674	6	29.5560541	6
	А	6661	Strip 3	4200	185.0099009	44.04997642	68.54965	Mf	0.5	4.5	6.5	50.35674	6	29.5560541	6
	С	5588	Strip 2	3399	149.7258698	44.04997642	72.067664	Mf	0.5	4.5	6.5	58.4917	7	29.5560541	7
	E	3008	Strip 1	1908	48.47613192	25.40677774	37.335315	Ma	27	27.5	26.5	150.727	18	23.1201525	18
South	G	5396	Strip 1	3771	148.496281	39.37848872	113.618206	Mb	15.5	19	16.5	67.802848	8	77.23249438	10
	Н	3529	Strip 1	2239	131.2385762	58.61481742	172.738665	Mb	15.5	19	16.5	68.005299	8	114.9604442	14
	G	4610	Strip 1	2730.5	105.2472914	38.54506187	109.672664	Mb	15.5	19	16.5	101.7945	12	75.59790564	12
West	F	3251	Strip 2	1908	45.6229872	23.91141887	35.136959	Ma	27	27.5	26.5	67.6881	8	22.58048538	8
	С	3436	Strip 1	2221	92.33246682	41.57247493	39.671737	Mh	-3.5	-3	-2.5	67.35973	8	-15.01970284	8
	А	3493	Strip 2	2192.5	88.43448288	40.33499789	56.43455	Mf	0.5	4.5	6.5	33.81823	4	27.06342833	4
	D	4751	Strip 2	2939	116.3031423	39.57235192	71.433078	Mb	15.5	19	16.5	59.08297	7	77.61271563	10
	Ι	6705	Strip 1	6705	293.3048649	43.74420057	50.744322	Mb	10.5	13	11.5	68.0053	8	58.70177756	8

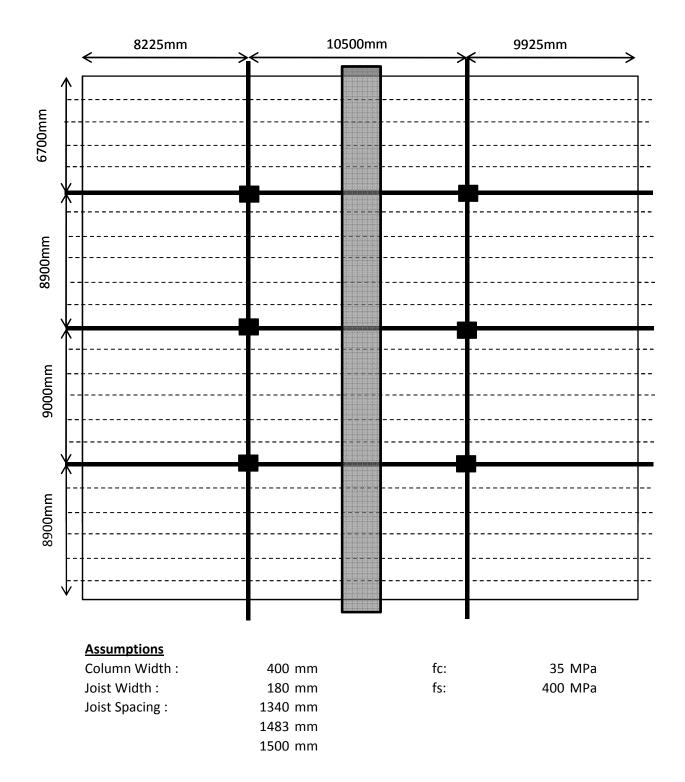
Sides	Panel Type	X Distance to Third Strip	Corresponding Design Strip	Width of Panel for Lift	Weight for Lift	Distributed Load (kN/m)	Max Moment	Corresponding Graph Moment	Moment Coefficient 30 deg	Moment Coefficient 45 deg	Moment Coefficient 60 deg	Mr	# bars	new Mr	new # bars
North	С	-	-	-	-	-	-	-	-		-	-	-	-	-
	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	В	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	E	4760	Strip 1	1971	50.07675892	25.40677774	37.335315	Ma	27	27.5	26.5	150.845	18	23.99261108	18
	С	-	-	-	-	-	-	-	-	-	-	-	-	-	-
East	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	С	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	E	4607	Strip 1	1908	48.47613192	25.40677774	37.335315	Ma	27	27.5	26.5	150.727	18	23.99261108	18
South	G	8800	Strip 2	3771	148.496281	39.37848872	113.618206	Mb	15.5	19	16.5	68.022485	8	77.23249438	10
	н	5405	Strip 1	2237	131.1213466	58.61481742	172.738665	Mb	15.5	19	16.5	68.005299	8	114.9604442	14
	G	6899	Strip 1	2730	105.2280189	38.54506187	109.672664	Mb	15.5	19	16.5	101.7945	12	75.59790564	12
West	F	4850	Strip 2	1907.5	45.61103149	23.91141887	35.136959	Ma	27	27.5	26.5	67.6881	8	22.58048538	8
	С	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Α	5331	Strip 2	2192.5	88.43448288	40.33499789	56.43455	Mf	0.5	4.5	6.5	33.81823	4	27.06342833	4
	D	7215	Strip 3	2939	116.3031423	39.57235192	71.433078	Mb	15.5	19	16.5	41.99897	5	77.61271563	10
	Ι	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Sides	Panel Type	X Distance to Fourth Strip	Corresponding Design Strip	Width of Panel for Lift	Weight for Lift	Distributed Load (kN/m)	Max Moment	Corresponding Graph Moment	Moment Coefficient 30 deg	Moment Coefficient 45 deg	Moment Coefficient 60 deg	Mr	# bars	new Mr	new # bars
North	С	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	В	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	E	7050	Strip 1	1963	49.8735047	25.40677774	37.335315	Ma	27	27.5	26.5	150.845	18	23.99261108	18
	С	-	-	-	-	-	-	-	-	-	-	-	-	-	-
East	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	С	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	E	6823	Strip 1	1900	48.2728777	25.40677774	37.335315	Ma	27	27.5	26.5	150.727	18	23.99261108	18
South	G	13386	Strip 2	3961	155.9781938	39.37848872	113.618206	Mb	15.5	19	16.5	68.022485	8	77.23249438	10
	н	8005	Strip 1	2230	130.7110428	58.61481742	172.738665	Mb	15.5	19	16.5	68.005299	8	114.9604442	14
	G	9867	Strip 1	2516	96.97937567	38.54506187	109.672664	Mb	15.5	19	16.5	101.7945	12	75.59790564	12
West	F	6905	Strip 2	1738.5	41.5700017	23.91141887	35.136959	Ma	27	27.5	26.5	67.6881	8	22.58048538	8
	С	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Α	7854	Strip 3	2160.5	87.14376295	40.33499789	56.43455	Mf	0.5	4.5	6.5	42.25047	5	27.06342833	5
	D	10551	Strip 4	2850	112.781203	39.57235192	71.433078	Mb	15.5	19	16.5	67.20966	8	77.61271563	10
	I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-

13.11.1 Resistance to Overturning

Mr ≥ Mof

Mr (Wroof + Wfloor + Wpanel) b/2 + Vr main Imain Mof Vroof Iroof + Vfloor Ifloor + Vpanel Ipanel


Sides	Panel Type	l roof (mm)	l floor (mm)	l panel (mm)	V roof (kN)	V floor (kN)	V panel (kN)	Mof (kN.m)
North	Ċ	9833	5531	5080	77.30272	10.87057	23.75376	940.9119
	Α	9833	5531	4880	54.85608	30.8562	34.13489	876.6437
	В	9833	5531	5036	54.85608	30.8562	31.91474	870.7881
	Е	5533	0	2930	19.05399	0	17.8059	157.597
	С	9833	5531	5217	73.51571	41.35212	18.3785	1047.479
East	А	9683	5381	4897	74.57452	41.44227	37.07755	1126.675
	А	9683	5381	4880	74.57452	41.44227	34.13489	1111.684
	А	9683	5381	4872	74.57452	41.44227	32.95782	1105.676
	С	9683	5381	5007	74.57452	41.44227	27.26867	1081.64
	Е	5383	0	2930	74.79903	0	6.527697	421.7694
South	G	9833	5531	5921	98.02095	55.13616	52.8574	1581.767
	Н	9833	5531	6294	98.02095	55.13616	46.56995	1561.909
	G	9833	5531	5862	98.02095	55.13616	37.42215	1488.167
West	F	5383	0	3329	37.39952	0	6.143498	221.7733
	С	9683	5381	4952	47.45299	26.3704	15.36122	677.4552
	А	9683	5381	4952	47.45299	26.3704	35.30489	776.2163
	D	9683	5381	5132	47.45299	26.3704	41.35685	813.6298
	I	9683	5381	6239	249.6835	165.7691	32.94334	3515.223

8.93 kPa

Roof

Floor 14.23 kPa

Panel Type	Width (m)	W roof (kN)	W floor (kN)	W panel (kN)	Vr main (kN)	l main (mm)	Mr	Mr > Mof
С	6.054	240.5828	383.37	257.1468	180.0027	200	2703.155	Ok
Α	8.700	260.2649	414.7334	350.7176	245.5023	200	4510.964	Ok
В	8.134	243.3372	387.759	348.7707	244.1395	200	4034.02	Ok
Е	7.868	274.0293	436.667	199.9081	139.9357	200	3610.442	Ok
С	4.684	140.1287	223.2958	206.3367	144.4357	200	1363.311	Ok
А	9.450	418.7779	667.3247	383.7551	268.6285	200	6998.804	Ok
А	8.700	385.5416	614.3625	350.7176	245.5023	200	5924.305	Ok
А	8.400	372.2471	593.1776	337.5026	236.2518	200	5519.545	Ok
С	6.950	307.9901	490.7838	295.3083	206.7158	200	3843.279	Ok
Е	7.616	255.0408	406.4088	193.498	135.4486	200	3282.73	Ok
G	15.070	598.8592	954.2851	479.9332	335.9532	200	15386.43	Ok
Н	8.920	354.4674	564.8456	291.1599	203.812	200	5439.472	Ok
G	10.900	433.1497	690.2262	352.5906	246.8134	200	8093.379	Ok
F	7.616	255.0408	406.4088	155.3445	108.7411	200	3132.1	Ok
С	4.375	160.6702	256.0288	181.8796	127.3157	200	1334.854	Ok
Α	8.753	321.4506	512.2332	353.0522	247.1366	200	5243.178	Ok
D	11.733	430.9029	686.6459	462.6584	323.8609	200	9335.334	Ok
I	8.455	221.6017	353.1235	279.4173	195.5921	200	3650.006	Ok

One Way Slab Check

Inlong Inshort	=	6.4	Inlong Inshort	=	8.1	Inlong Inshort	=	7.6
Inlong Inshort	=	5.8	Inlong Inshort	=	7.3	Inlong Inshort	=	6.8
Inlong Inshort	=	5.7	Inlong Inshort	=	7.2	Inlong Inshort	=	6.8
Inlong Inshort	=	5.8	Inlong Inshort	=	7.3	Inlong Inshort	=	6.8

All values are greater than or equal to 2.0. Therefore, one way slab.

Slab Thickness

Exterior Span:	52 mm	or	50 mm					
Interior Span:	47 mm	or	47 mm					
However with composite panel slab thickness must be								
Steel decking governs slab thickness therefore slab is								

<u>Loads</u>

Self Weight of Slab =	1.507	kPa
Dead Load =	2.740 I	kPa
Live Load =	7.182	kPa
Total Factored Load =	14.198	kPa

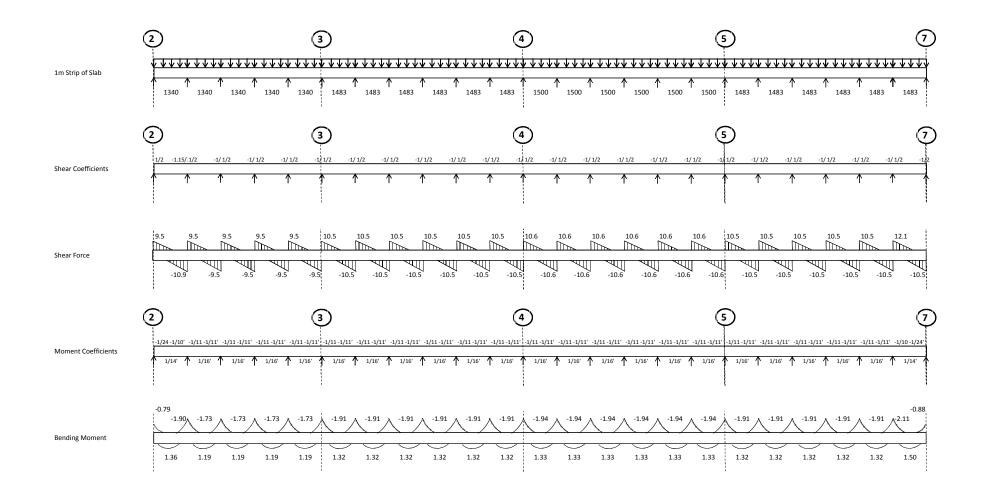
Design Moments

For a slab design strip - one meter	r wide, wf =		14.198 kPa
Limitations for use of clause 9.3.3 a) Two or more spans. b) Difference between two adjace c) Loads are uniformly distributed d) FactoredLL/FactoredDL <u><</u> 2.0 e) All members are prismatic	ent spans <u><</u> 20	0% 3.145401	
Max Shear =	12.1	kN	
Max Positive Moment =	1.50	kN-M	
Max Negative Moment =	-2.11	kN-M	
Main Reinforcement			
Standard Mesh Fabric	A193		
Sactual	200	mm	
Smax	192	mm	
Diameter	-	mm	
Area	38.48448		
Sheet Dimensions	2.15m	X	5.00m
Weight	24.1	kg/pc	
Maximum Moment =	2.11		
Clear Cover =	-	mm	
d =	60.5	mm	

Assuming on meter Rectangular Section

Kr = 0.575251

From Table 2.1			Kr	ρ
		Upper :	0.6	0.18
ρ = 0.17	72575 %	Lower :	0.5	0.15
As =	104 mm^2			
Asmin =	128 mm^2			
Asactual =	192 mm^2			
Shrinkage and Te	emperature Reinforcement			
Smax =	320 mm			
• •	400			


Astemp = 128 mm Amesh = 25.6 < Aactual

Crack Control

dc =	3.5 mm	
y =	7 mm	
A =	1400 mm^2	
fs =	240 MPa	
z =	4076 N/mm	<u><</u> 30000

Shear Capacity

dv =	54.45 mm	or	46.08 mm
dv =	54.45 mm		
β =	0.21		
λ =	1		
φ =	0.65		
Vr =	44.0 kN	>	12.1 kN

Page |E-1

Appendix E COST ESTIMATE

Cost Estimate

Job: Lawtons Drug Building

Structure	Component	Туре	Unit	Quantity	Cost/Unit	Cos	t
Floor Slab	Concrete	35 Mpa	m ³	78	\$ 176.00	\$ 13,7	28.00
		Meters Pumped	m ³	78	\$ 3.35	\$ 2	61.30
	Concrete Pumping	Pump Hourly Rate	hr	24	\$ 160.00		40.00
		Fuel	%	3	\$ 4.90		23.04
	Finishing	Machinery	m ²	1010	\$ 13.46	\$ 13,5	94.60
	Mesh Reinforcement	A193 Welded Wire	m ²	1010	\$ 7.50	\$ 7,5	75.00
Second	Open Web Steel Joist	OWSJ 650 x 31.8	tonne	22.01	\$ 3,800.00	\$ 83,6	26.23
	Steel Beams N-S	W530 x 182	tonne	15.68	\$ 3,800.00	\$ 59,5	90.77
	Steel Beam E-W	W410 x 132	tonne	8.72	\$ 3,800.00	\$ 33,1	33.39
	Steel Decking	P-3615	tonne	12.19	\$ 3,800.00	\$ 46,3	06.57
	Bolts	3/4 in	each	96	\$ 25.00	\$ 2,4	00.00
	L-Channel	L 102 x 102 x 7.9	tonne	1.66	\$ 3,800.00	\$ 6,3	03.12
	Open Web Steel Joist	OWSJ 550 x 24.6	tonne	14.21	\$ 3,800.00	\$ 53,9	94.89
	Steel Beams E-W	W200 x 59	tonne	5.13	\$ 3,800.00	\$ 19,4	84.17
	Steel Beams N-S	W250 x 80	tonne	6.92	\$ 3,800.00	\$ 26,3	13.68
Roof Steel	Steel Decking	P-3615	tonne	12.97	\$ 3,800.00	\$ 49,2	79.46
	Bolts	3/4 in	each	81	\$ 25.00	\$ 2,0	25.00
	Loading Bay Steel Joist	OWSJ 650 x 31.8	tonne	1.22	\$ 3,800.00	\$ 4,6	54.76
Steel	Interior/Front Columns	W360 x 287	tonne	18.73	\$ 3,800.00	\$ 71,1	69.10
Steel Columns	Loading Bay Frame	W360 x 162	tonne	3.11	\$ 3,800.00	\$ 11,8	06.84
	Anchor Bolts	ASTM A1554	each	56.00	\$ 25.00	\$ 1,4	00.00
Tilt-Up	Concrete	25 MPa	m ³	233	\$ 176.00	\$ 40,9	20.00
		Meters Pumped	m ³	233	\$ 3.35	\$ 7	80.55
	Concrete Pumping	Pump Hourly Rate	hr	48	\$ 160.00	\$ 7,6	80.00
		Fuel	%	3	\$ 4.90	\$ 2	53.82
	Finishing	Machinery	m ²	1263	\$ 13.46	\$ 16,9	99.98
Panels	Reinforcement	10M & 15M	tonne	15.52	\$ 3,800.00	\$ 58,9	76.00
	Bearing Distor	PL 460 x 460 x 20	each	8	\$ 200.00	\$ 1,6	00.00
		PL 325 x 325 x 9.5	each	4	\$ 125.00	\$ 5	00.00
	Bearing Plates	PL 225 x 225 x 9.5	each	12	\$ 100.00	\$ 1,2	00.00
		PL 200 x 150 x 9.5	each	146	\$ 75.00	\$ 10,9	50.00
	Lift Inserts	Superlift III Insert	each	122	\$ 50.00	\$ 6,1	00.00
Project Tota						\$ 656,5	70.27

Contact Information

Client

Mr. Karl Green CHIMO Construction Management Ltd. 1 Crosbie Place St. John's, NL A1B 3Y8 Phone:(709) 739-5900 Email: kgreen@crosbiegroup.com

Instructor

Dr. Steve Bruneau EN-4013 Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, NL A1B 3X5 Phone: (709) 737-2119 Fax: (709) 737-4042 Email: <u>sbruneau@mun.ca</u>

Safety. Serviceability. Satisfaction.

CDNL Engineering Consultants

c/o Engineering 8700 Project Group 6 Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's NL, AIB 3X5

cdnlengineering@gmail.com